Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Seminar, 1967, Volume 6, Number 1, Pages 5–8 (Mi al1080)  

This article is cited in 1 scientific paper (total in 1 paper)

On the groups whose lattice of subgroups is relatively complemented

I. N. Abramovskii
Full-text PDF (109 kB) Citations (1)
Abstract: A locally finite group $G$ has the relatively complemented lattice of the subgroups if and only if (1) $G_1 \vartriangleleft G_2\vartriangleleft G_3\Rightarrow G_1\vartriangleleft G_3$ each subgroups $G_i$ in $G$ and (2) every Sylow subgroup of $G$ is elementary abelian and belongs to some complete Sylow base of $G$.
Received: 28.01.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. N. Abramovskii, “On the groups whose lattice of subgroups is relatively complemented”, Algebra i Logika. Sem., 6:1 (1967), 5–8
Citation in format AMSBIB
\Bibitem{Abr67}
\by I.~N.~Abramovskii
\paper On the groups whose lattice of subgroups is relatively complemented
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 1
\pages 5--8
\mathnet{http://mi.mathnet.ru/al1080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0217189}
Linking options:
  • https://www.mathnet.ru/eng/al1080
  • https://www.mathnet.ru/eng/al/v6/i1/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024