|
This article is cited in 15 scientific papers (total in 15 papers)
Lattices of Dominions in Quasivarieties of Abelian Groups
S. A. Shakhova
Abstract:
Let $\mathcal M$ be any quasivariety of Abelian groups, $\operatorname{dom}^{\mathcal M}_G(H)$ be the dominion of a subgroup $H$ of a group $G$ in $\mathcal M$, and $L_q(\mathcal M)$ be the lattice of subquasivarieties of $\mathcal M$. It is proved that $\operatorname{dom}^{\mathcal M}_G(H)$ coincides with a least normal subgroup of the group $G$ containing $H$, the factor group with respect to which is in $\mathcal M$. Conditions are specified subject to which the set
$L(G,H,\mathcal M)=\{\operatorname{dom}^{\mathcal N}_G(H)\mid\mathcal N\in L_q(\mathcal M)\}$ forms a lattice under set-theoretic inclusion and the map
$\varphi\colon L_q(\mathcal M)\rightarrow L(G,H,\mathcal M)$ such that
$\varphi (\mathcal N)=\operatorname{dom}^{\mathcal N}_G(H)$ for any quasivariety $\mathcal N\in L_q(\mathcal M)$ is an antihomomorphism of the lattice $L_q(\mathcal M)$ onto the lattice $L(G,H,\mathcal M)$.
Keywords:
quasivariety, dominion, lattice, group.
Received: 20.04.2004
Citation:
S. A. Shakhova, “Lattices of Dominions in Quasivarieties of Abelian Groups”, Algebra Logika, 44:2 (2005), 238–251; Algebra and Logic, 44:2 (2005), 132–139
Linking options:
https://www.mathnet.ru/eng/al108 https://www.mathnet.ru/eng/al/v44/i2/p238
|
Statistics & downloads: |
Abstract page: | 450 | Full-text PDF : | 94 | References: | 74 | First page: | 1 |
|