Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 6, Pages 702–729 (Mi al106)  

This article is cited in 4 scientific papers (total in 4 papers)

The Computable Dimension of $I$-Trees of Infinite Height

N. T. Kogabaeva, O. V. Kudinova, R. Millerb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Cornell University
Full-text PDF (291 kB) Citations (4)
References:
Abstract: We study computable trees with distinguished initial subtree (briefly, $I$-trees). It is proved that all $I$-trees of infinite height are computably categorical, and moreover, they all have effectively infinite computable dimension.
Keywords: computable tree with distinguished initial subtree, computable dimension, computably categorical model, branching model, effectively infinite computable dimension.
Received: 19.02.2003
Revised: 04.06.2004
English version:
Algebra and Logic, 2004, Volume 43, Issue 6, Pages 393–407
DOI: https://doi.org/10.1023/B:ALLO.0000048828.44523.94
Bibliographic databases:
UDC: 510.53+512.562
Language: Russian
Citation: N. T. Kogabaev, O. V. Kudinov, R. Miller, “The Computable Dimension of $I$-Trees of Infinite Height”, Algebra Logika, 43:6 (2004), 702–729; Algebra and Logic, 43:6 (2004), 393–407
Citation in format AMSBIB
\Bibitem{KogKudMil04}
\by N.~T.~Kogabaev, O.~V.~Kudinov, R.~Miller
\paper The Computable Dimension of $I$-Trees of Infinite Height
\jour Algebra Logika
\yr 2004
\vol 43
\issue 6
\pages 702--729
\mathnet{http://mi.mathnet.ru/al106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2135388}
\zmath{https://zbmath.org/?q=an:1096.03051}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 6
\pages 393--407
\crossref{https://doi.org/10.1023/B:ALLO.0000048828.44523.94}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249092673}
Linking options:
  • https://www.mathnet.ru/eng/al106
  • https://www.mathnet.ru/eng/al/v43/i6/p702
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :126
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024