Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 2, Pages 198–210 (Mi al104)  

This article is cited in 1 scientific paper (total in 1 paper)

Lattices of Interpretability Types of Varieties

D. M. Smirnov
Full-text PDF (167 kB) Citations (1)
References:
Abstract: Let $\Pi$ be the set of all primes, $\mathbb A$ the field of all algebraic numbers, and $Z$ the set of square-free natural numbers. We consider partially ordered sets of interpretability types such as
$$ \mathbb L_\Pi=(\{[AD_\Gamma]\mid\Gamma\subseteq\Pi\},\le), \qquad \mathbb L_\mathbb A=(\{[M_\mathbb K]\mid\mathbb K\subseteq\mathbb A\},\le), $$
and
$$ \mathbb L_Z=(\{[G_n]\mid n\in Z\},\le), $$
where $AD_\Gamma$ is a variety of $\Gamma$-divisible Abelian groups with unique taking of the $p$th root $\xi_p(x)$ for every $p\in\Gamma$, $M_\mathbb K$ is a variety of $\mathbb K$-modules over a normal field $\mathbb K$, contained in $\mathbb A$, and $G_n$ is a variety of $n$-groupoids defined by a cyclic permutation $(12\ldots n)$. We prove that $\mathbb L_\Pi$, $\mathbb L_\mathbb A$, and $\mathbb L_Z$ are distributive lattices, with $\mathbb L_\Pi\cong \mathbb L_\mathbb A\cong \mathbb S\rm ub\,\Pi$ and $\mathbb L_Z\cong \mathbb S\rm ub_f\Pi$ where $\mathbb S\rm ub\,\Pi$ and $\mathbb S\rm ub_f\Pi$ are lattices (w. r. t. inclusion) of all subsets of the set $\Pi$ and of finite subsets of $\Pi$, respectively.
Keywords: interpretability type, variety, $\Gamma$-divisible Abelian group, module over a normal field, $n$-groupoid.
Received: 14.04.2004
English version:
Algebra and Logic, 2005, Volume 44, Issue 2, Pages 109–116
DOI: https://doi.org/10.1007/s10469-005-0012-1
Bibliographic databases:
UDC: 512.572
Language: Russian
Citation: D. M. Smirnov, “Lattices of Interpretability Types of Varieties”, Algebra Logika, 44:2 (2005), 198–210; Algebra and Logic, 44:2 (2005), 109–116
Citation in format AMSBIB
\Bibitem{Smi05}
\by D.~M.~Smirnov
\paper Lattices of Interpretability Types of Varieties
\jour Algebra Logika
\yr 2005
\vol 44
\issue 2
\pages 198--210
\mathnet{http://mi.mathnet.ru/al104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170696}
\zmath{https://zbmath.org/?q=an:1103.08005}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 2
\pages 109--116
\crossref{https://doi.org/10.1007/s10469-005-0012-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18244399065}
Linking options:
  • https://www.mathnet.ru/eng/al104
  • https://www.mathnet.ru/eng/al/v44/i2/p198
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :85
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024