Annales de l'Institut Fourier
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Annales de l'Institut Fourier, 2019, Volume 69, Issue 3, Pages 1187–1228
DOI: https://doi.org/10.5802/aif.3268
(Mi aif6)
 

This article is cited in 4 scientific papers (total in 4 papers)

Volume geodesic distortion and ricci curvature for Hamiltonian dynamics

A. A. Agrachevab, D. Barilaric, E. Paolia

a SISSA, Via Bonomea 265, Trieste (Italy)
b Steklov Math. Inst., Moscow (Russia)
c IMJ-PRG, UMR CNRS 7586, Université Paris-Diderot, Batiment Sophie Germain, Case 7012, 75205 Paris Cedex 13 (France)
Citations (4)
Abstract: We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant, called volume geodesic derivative, describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics, appear in the asymptotic expansion of the volume. This generalizes the well-known expansion of the Riemannian volume in terms of Ricci curvature to a wide class of Hamiltonian flows, including all sub-Riemannian geodesic flows.
Funding agency Grant number
European Research Council 239748
Agence Nationale de la Recherche ANR-15-CE40-0018
This research has been supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract number 239748 and by the ANR project SRGI “Sub-Riemannian Geometry and Interactions”, contract number ANR-15-CE40-0018.
Received: 18.10.2016
Revised: 15.01.2018
Accepted: 13.03.2018
Bibliographic databases:
Document Type: Article
MSC: 53C17, 53B21, 53B15
Language: English
Linking options:
  • https://www.mathnet.ru/eng/aif6
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024