Loading [MathJax]/jax/output/SVG/config.js
Advances in Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Advances in Mathematics, 2013, Volume 238, Pages 322–411
DOI: https://doi.org/10.1016/j.aim.2013.02.006
(Mi admat10)
 

This article is cited in 28 scientific papers (total in 28 papers)

Parameterized Picard–Vessiot extensions and Atiyah extensions

H. Gilleta, S. Gorchinskiyb, A. Ovchinnikovcd

a University of Illinois at Chicago, Department of Mathematics Statistics, and Computer Science, 851 S Morgan Street
b Steklov Mathematical Institute, Gubkina str. 8
c CUNY Queens College, Department of Mathematics, 65-30 Kissena Blvd.
d CUNY Graduate Center, Department of Mathematics, 365 Fifth Avenue
Citations (28)
Abstract: Generalizing Atiyah extensions, we introduce and study differential abelian tensor categories over differential rings. By a differential ring, we mean a commutative ring with an action of a Lie ring by derivations. In particular, these derivations act on a differential category. A differential Tannakian theory is developed. The main application is to the Galois theory of linear differential equations with parameters. Namely, we show the existence of a parameterized Picard-Vessiot extension and, therefore, the Galois correspondence for many differential fields with, possibly, non-differentially closed fields of constants, that is, fields of functions of parameters. Other applications include a substantially simplified test for a system of linear differential equations with parameters to be isomonodromic, which will appear in a separate paper. This application is based on differential categories developed in the present paper, and not just differential algebraic groups and their representations.
Funding agency Grant number
National Science Foundation DMS-0500762
DMS-0901373
CCF-0952591
Russian Foundation for Basic Research 11-01-00145-a
Ministry of Education and Science of the Russian Federation NSh-4713.2010.1
MK-4881.2011.1
11.G34.31.0023
City University of New York 60001-40 41
H. Gillet was supported by the grants NSF DMS-0500762 and DMS-0901373. S. Gorchinskiy was supported by the grants RFBR 11-01-00145-a, NSh-4713.2010.1, MK-4881.2011.1, and AG Laboratory GU-HSE, RF government grant, ag. 11 11.G34.31.0023. A. Ovchinnikov was supported by the grants: NSF CCF-0952591 and PSC-CUNY No. 60001-40 41.
Received: 21.05.2012
Accepted: 13.02.2013
Bibliographic databases:
Document Type: Article
MSC: Primary 12H05; Secondary 12H20; 13N10; 20G05; 20H20; 34M15
Language: English
Linking options:
  • https://www.mathnet.ru/eng/admat10
  • This publication is cited in the following 28 articles:
    1. Lucia Di Vizio, Charlotte Hardouin, Anne Granier, “Intrinsic Approach to Galois Theory of 𝑞-Difference Equations”, Memoirs of the AMS, 279:1376 (2022)  crossref
    2. Omar León Sánchez, Anand Pillay, “Differential Galois cohomology and parameterized Picard–Vessiot extensions”, Commun. Contemp. Math., 23:08 (2021)  crossref
    3. Lucia Di Vizio, Charlotte Hardouin, “Galois theories of q-difference equations: comparison theorems”, Confluentes Mathematici, 12:2 (2021), 11  crossref
    4. Andrei Minchenko, Alexey Ovchinnikov, “Triviality of differential Galois cohomology of linear differential algebraic groups”, Communications in Algebra, 47:12 (2019), 5094  crossref
    5. Lucia Di Vizio, “Action of an endomorphism on (the solutions of) a linear differential equation”, Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2019, no. 1, 21  crossref
    6. Andrei Minchenko, Alexey Ovchinnikov, “Calculating Galois groups of third-order linear differential equations with parameters”, Commun. Contemp. Math., 20:04 (2018), 1750038  crossref
    7. Quentin Brouette, Françoise Point, “On differential Galois groups of strongly normal extensions”, Mathematical Logic Qtrly, 64:3 (2018), 155  crossref
    8. Annette Bachmayr, “New classes of parameterized differential Galois groups”, Math. Z., 288:1-2 (2018), 361  crossref
    9. Quentin Brouette, Greg Cousins, Anand Pillay, Francoise Point, “Embedded Picard–Vessiot extensions”, Communications in Algebra, 46:11 (2018), 4609  crossref
    10. OMAR LEÓN SÁNCHEZ, ANAND PILLAY, “SOME DEFINABLE GALOIS THEORY AND EXAMPLES”, Bull. symb. log, 23:2 (2017), 145  crossref
    11. Charlotte Hardouin, Andrei Minchenko, Alexey Ovchinnikov, “Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence”, Math. Ann., 368:1-2 (2017), 587  crossref
    12. Anand Pillay, “The Picard–Vessiot theory, constrained cohomology, and linear differential algebraic groups”, Journal de Mathématiques Pures et Appliquées, 108:6 (2017), 809  crossref
    13. Alexey Ovchinnikov, Michael Wibmer, “Tannakian Categories With Semigroup Actions”, Can. j. math., 69:3 (2017), 687  crossref
    14. Omar León Sánchez, Joel Nagloo, “On parameterized differential Galois extensions”, Journal of Pure and Applied Algebra, 220:7 (2016), 2549  crossref
    15. Annette Bachmayr, David Harbater, Julia Hartmann, “Differential Galois groups over Laurent series fields”, Proc. London Math. Soc., 112:3 (2016), 455  crossref
    16. Moshe Kamensky, Anand Pillay, “Interpretations and Differential Galois Extensions”, Int Math Res Notices, 2016:24 (2016), 7390  crossref
    17. Carlos E. Arreche, “On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters”, Journal of Symbolic Computation, 75 (2016), 25  crossref
    18. Annette Maier, “On the parameterized differential inverse Galois problem over k((t))(x)”, Journal of Algebra, 428 (2015), 43  crossref
    19. Andrey Minchenko, Alexey Ovchinnikov, Michael F. Singer, “Reductive Linear Differential Algebraic Groups and the Galois Groups of Parameterized Linear Differential Equations”, International Mathematics Research Notices, 2015:7 (2015), 1733  crossref
    20. Thomas Dreyfus, “A density theorem in parametrized differential Galois theory”, Pacific J. Math., 271:1 (2014), 87  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:229
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025