Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 32, Issue 2, Pages 299–320
DOI: https://doi.org/10.12958/adm1816
(Mi adm823)
 

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

On certain semigroups of contraction mappings of a finite chain

A. Umar

Department of Mathematics, The Petroleum Institute, Sas Nakhl, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, UAE
Full-text PDF (410 kB) Citations (2)
References:
Abstract: Let $[n]=\{1,2,\dots,n\}$ be a finite chain and let $\mathcal{P}_{n}$ (resp., $\mathcal{T}_{n}$) be the semigroup of partial transformations on $[n]$ (resp., full transformations on $[n]$). Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}\colon (\text{for all }x,y\in \operatorname{Dom}\alpha)\ |x\alpha-y\alpha|\leq|x-y|\}$ (resp., $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}\colon (\text{for all }x,y\in [n])\ |x\alpha-y\alpha|\leq|x-y|\}$) be the subsemigroup of partial contraction mappings on $[n]$ (resp., subsemigroup of full contraction mappings on $[n]$). We characterize all the starred Green's relations on $\mathcal{CP}_{n}$ and it subsemigroup of order preserving and/or order reversing and subsemigroup of order preserving partial contractions on $[n]$, respectively. We show that the semigroups $\mathcal{CP}_{n}$ and $\mathcal{CT}_{n}$, and some of their subsemigroups are left abundant semigroups for all $n$ but not right abundant for $n\geq 4$. We further show that the set of regular elements of the semigroup $\mathcal{CT}_{n}$ and its subsemigroup of order preserving or order reversing full contractions on $[n]$, each forms a regular subsemigroup and an orthodox semigroup, respectively.
Keywords: starred Green's relations, orthodox semigroups, quasi-adequate semigroups, regularity.
Funding agency Grant number
Bayero University
TETFund - Tertiary Education Trust Fund
The second author would like to thank Bayero University and TET Fund for financial support.
Received: 02.05.2021
Revised: 02.10.2021
Document Type: Article
MSC: 20M20
Language: English
Citation: A. Umar, “On certain semigroups of contraction mappings of a finite chain”, Algebra Discrete Math., 32:2 (2021), 299–320
Citation in format AMSBIB
\Bibitem{Uma21}
\by A.~Umar
\paper On certain semigroups of contraction mappings of a~finite chain
\jour Algebra Discrete Math.
\yr 2021
\vol 32
\issue 2
\pages 299--320
\mathnet{http://mi.mathnet.ru/adm823}
\crossref{https://doi.org/10.12958/adm1816}
Linking options:
  • https://www.mathnet.ru/eng/adm823
  • https://www.mathnet.ru/eng/adm/v32/i2/p299
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :71
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024