|
RESEARCH ARTICLE
Maximal subgroup growth of a few polycyclic groups
A. Kelley, E. Wolfe Colorado College, 14 E. Cache La Poudre St., Colorado Springs, CO, 80903, USA
Abstract:
We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let Gk=⟨x1,x2,…,xk∣xixjx−1ixj for all i<j⟩, so Gk=Z⋊(Z⋊(Z⋊⋯⋊Z)). Then for all integers k≥2, we calculate mn(Gk), the number of maximal subgroups of Gk of index n, exactly. Also, for infinitely many groups Hk of the form Z2⋊G2, we calculate mn(Hk) exactly.
Keywords:
maximal subgroup growth, polycyclic groups, semidirect products.
Received: 03.12.2019 Revised: 04.01.2021
Citation:
A. Kelley, E. Wolfe, “Maximal subgroup growth of a few polycyclic groups”, Algebra Discrete Math., 32:2 (2021), 226–235
Linking options:
https://www.mathnet.ru/eng/adm817 https://www.mathnet.ru/eng/adm/v32/i2/p226
|
Statistics & downloads: |
Abstract page: | 114 | Full-text PDF : | 46 | References: | 32 |
|