|
RESEARCH ARTICLE
Maximal subgroup growth of a few polycyclic groups
A. Kelley, E. Wolfe Colorado College, 14 E. Cache La Poudre St., Colorado Springs, CO, 80903, USA
Abstract:
We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let $G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle$, so $G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))$. Then for all integers $k \geq 2$, we calculate $m_n(G_k)$, the number of maximal subgroups of $G_k$ of index $n$, exactly. Also, for infinitely many groups $H_k$ of the form $\mathbb{Z}^2 \rtimes G_2$, we calculate $m_n(H_k)$ exactly.
Keywords:
maximal subgroup growth, polycyclic groups, semidirect products.
Received: 03.12.2019 Revised: 04.01.2021
Citation:
A. Kelley, E. Wolfe, “Maximal subgroup growth of a few polycyclic groups”, Algebra Discrete Math., 32:2 (2021), 226–235
Linking options:
https://www.mathnet.ru/eng/adm817 https://www.mathnet.ru/eng/adm/v32/i2/p226
|
Statistics & downloads: |
Abstract page: | 82 | Full-text PDF : | 23 | References: | 21 |
|