Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 32, Issue 2, Pages 226–235
DOI: https://doi.org/10.12958/adm1506
(Mi adm817)
 

RESEARCH ARTICLE

Maximal subgroup growth of a few polycyclic groups

A. Kelley, E. Wolfe

Colorado College, 14 E. Cache La Poudre St., Colorado Springs, CO, 80903, USA
References:
Abstract: We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let $G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle$, so $G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))$. Then for all integers $k \geq 2$, we calculate $m_n(G_k)$, the number of maximal subgroups of $G_k$ of index $n$, exactly. Also, for infinitely many groups $H_k$ of the form $\mathbb{Z}^2 \rtimes G_2$, we calculate $m_n(H_k)$ exactly.
Keywords: maximal subgroup growth, polycyclic groups, semidirect products.
Funding agency Grant number
Colorado College
This paper was done with the support of the Student Collaborative Research grant at Colorado College.
Received: 03.12.2019
Revised: 04.01.2021
Document Type: Article
MSC: 20E07
Language: English
Citation: A. Kelley, E. Wolfe, “Maximal subgroup growth of a few polycyclic groups”, Algebra Discrete Math., 32:2 (2021), 226–235
Citation in format AMSBIB
\Bibitem{KelWol21}
\by A.~Kelley, E.~Wolfe
\paper Maximal subgroup growth of a~few polycyclic groups
\jour Algebra Discrete Math.
\yr 2021
\vol 32
\issue 2
\pages 226--235
\mathnet{http://mi.mathnet.ru/adm817}
\crossref{https://doi.org/10.12958/adm1506}
Linking options:
  • https://www.mathnet.ru/eng/adm817
  • https://www.mathnet.ru/eng/adm/v32/i2/p226
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:77
    Full-text PDF :22
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024