Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2021, Volume 32, Issue 1, Pages 138–146
DOI: https://doi.org/10.12958/adm1424
(Mi adm811)
 

RESEARCH ARTICLE

Cancellation ideals of a ring extension

S. Tchamna

Department of Mathematics, Georgia College, Milledgeville, GA, USA
References:
Abstract: We study properties of cancellation ideals of ring extensions. Let $R \subseteq S$ be a ring extension. A nonzero $S$-regular ideal $I$ of $R$ is called a (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever $IB = IC$ for two $S$-regular (finitely generated) $R$-submodules $B$ and $C$ of $S$, then $B =C$. We show that a finitely generated ideal $I$ is a cancellation ideal of the ring extension $R\subseteq S$ if and only if $I$ is $S$-invertible.
Keywords: ring extension, cancellation ideal, pullback diagram.
Received: 26.07.2019
Revised: 30.10.2020
Document Type: Article
MSC: 13A15, 13A18, 13B02
Language: English
Citation: S. Tchamna, “Cancellation ideals of a ring extension”, Algebra Discrete Math., 32:1 (2021), 138–146
Citation in format AMSBIB
\Bibitem{Tch21}
\by S.~Tchamna
\paper Cancellation ideals of a ring extension
\jour Algebra Discrete Math.
\yr 2021
\vol 32
\issue 1
\pages 138--146
\mathnet{http://mi.mathnet.ru/adm811}
\crossref{https://doi.org/10.12958/adm1424}
Linking options:
  • https://www.mathnet.ru/eng/adm811
  • https://www.mathnet.ru/eng/adm/v32/i1/p138
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:36
    Full-text PDF :29
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024