Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 30, Issue 2, Pages 254–266
DOI: https://doi.org/10.12958/adm1068
(Mi adm780)
 

RESEARCH ARTICLE

General formal local cohomology modules

Sh. Rezaei

Payame Noor University, Tehran, Iran
References:
Abstract: Let $(R,\mathfrak{m})$ be a local ring, $\Phi$ a system of ideals of $R$ and $M$ a finitely generated $R$-module. In this paper, we define and study general formal local cohomology modules. We denote the $i$-th general formal local cohomology module $M$ with respect to $\Phi$ by $\mathfrak{F}_{\Phi}^{i}(M)$ and we investigate some finiteness and Artinianness properties of general formal local cohomology modules.
Keywords: formal local cohomology, local cohomology, system of ideals.
Received: 23.02.2018
Revised: 28.08.2020
Bibliographic databases:
Document Type: Article
MSC: 13D45, 13C14
Language: English
Citation: Sh. Rezaei, “General formal local cohomology modules”, Algebra Discrete Math., 30:2 (2020), 254–266
Citation in format AMSBIB
\Bibitem{Rez20}
\by Sh.~Rezaei
\paper General formal local cohomology modules
\jour Algebra Discrete Math.
\yr 2020
\vol 30
\issue 2
\pages 254--266
\mathnet{http://mi.mathnet.ru/adm780}
\crossref{https://doi.org/10.12958/adm1068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614510500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100276735}
Linking options:
  • https://www.mathnet.ru/eng/adm780
  • https://www.mathnet.ru/eng/adm/v30/i2/p254
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :47
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024