Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 30, Issue 2, Pages 179–193
DOI: https://doi.org/10.12958/adm1246
(Mi adm774)
 

RESEARCH ARTICLE

Some properties of $E(G,W,\mathcal{F}_TG)$ and an application in the theory of splittings of groups

E. L. C. Fantia, L. S. Silvab

a Department of Mathematics - UNESP - São Paulo State University, IBILCE, R. Cristovão Colombo, 2265, CEP 15054-000, São José do Rio Preto-SP, Brazil
b IFSP - Federal Institute of Technology in São Paulo, Av. dos Universitários, 145, CEP 17607-220, Tupã-SP, Brazil
References:
Abstract: Let us consider $W$ a $G$-set and $M$ a $\mathbb{Z}_2G$-module, where $G$ is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant $E(G,W,M)$, defined in [5] and present related results with independence of $E(G,W,M)$ with respect to the set of $G$-orbit representatives in $W$ and properties of the invariant $E(G,W,\mathcal{F}_TG)$ establishing a relation with the end of pairs of groups $\widetilde{e}(G,T)$, defined by Kropphller and Holler in [15]. The main results give necessary conditions for $G$ to split over a subgroup $T$, in the cases where $M=\mathbb{Z}_2(G/T)$ or $M=\mathcal{F}_TG$.
Keywords: cohomology of groups, cohomological invariants, splittings and derivation of groups.
Funding agency Grant number
Fundação de Amparo à Pesquisa do Estado de São Paulo 12/24454-8
16/24707-4
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior
The authors' research was supported by FAPESP (grant 12/24454-8, 16/24707-4) and CAPES.
Received: 05.09.2018
Revised: 11.07.2020
Bibliographic databases:
Document Type: Article
MSC: 20E06, 20J06, 57M07
Language: English
Citation: E. L. C. Fanti, L. S. Silva, “Some properties of $E(G,W,\mathcal{F}_TG)$ and an application in the theory of splittings of groups”, Algebra Discrete Math., 30:2 (2020), 179–193
Citation in format AMSBIB
\Bibitem{FanSil20}
\by E.~L.~C.~Fanti, L.~S.~Silva
\paper Some properties of $E(G,W,\mathcal{F}_TG)$ and~an~application in the theory of splittings of~groups
\jour Algebra Discrete Math.
\yr 2020
\vol 30
\issue 2
\pages 179--193
\mathnet{http://mi.mathnet.ru/adm774}
\crossref{https://doi.org/10.12958/adm1246}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614510500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100309460}
Linking options:
  • https://www.mathnet.ru/eng/adm774
  • https://www.mathnet.ru/eng/adm/v30/i2/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :21
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024