|
This article is cited in 3 scientific papers (total in 3 papers)
RESEARCH ARTICLE
Some results on the main supergraph of finite groups
A. K. Asboeia, S. S. Salehib a Department of Mathematics, Farhangian University, Tehran, Iran
b Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran
Abstract:
Let $G$ be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong \mathrm{PSL}(2,p)$ or $\mathrm{PGL}(2,p)$ if and only if $\mathcal{S}(G)\cong \mathcal{S}(\mathrm{PSL}(2,p))$ or $\mathcal{S}(\mathrm{PGL}(2,p))$, respectively. Also, we will show that if $M$ is a sporadic simple group, then $G\cong M$ if only if $\mathcal{S}(G)\cong \mathcal{S}(M)$.
Keywords:
graph, main supergraph, finite groups, Thompson's problem.
Received: 01.12.2017 Revised: 18.03.2018
Citation:
A. K. Asboei, S. S. Salehi, “Some results on the main supergraph of finite groups”, Algebra Discrete Math., 30:2 (2020), 172–178
Linking options:
https://www.mathnet.ru/eng/adm773 https://www.mathnet.ru/eng/adm/v30/i2/p172
|
Statistics & downloads: |
Abstract page: | 155 | Full-text PDF : | 87 | References: | 32 |
|