This article is cited in 2 scientific papers (total in 2 papers)
RESEARCH ARTICLE
Gentle m -Calabi–Yau tilted algebras
A. Garcia Elsener ab a Universisty of Graz, Institute of Mathematics and Scientific Computing - NAWI Graz, Heinrichstrasse 36, 8010, Graz, Austria
b Universidad Nacional de Mar del Plata, Departamento de Matematica, Dean Funes 3350, Argentina
Abstract:
We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the m -cluster-tilted algebras of type A and ˜ A , we prove that a module M is stable Cohen-Macaulay if and only if Ω m + 1 τ M ≃ M .
Keywords:
2-Calabi–Yau tilted algebras, Jacobian algebras, Gentle algebras, derived category, Cohen-Macaulay modules, cluster-tilted algebras.
Received: 26.07.2019Revised: 17.12.2019
Citation:
A. Garcia Elsener, “Gentle m -Calabi–Yau tilted algebras”, Algebra Discrete Math. , 30 :1 (2020), 44–62
Linking options:
https://www.mathnet.ru/eng/adm764 https://www.mathnet.ru/eng/adm/v30/i1/p44
2
CITATIONS
2
Total citations
1
Recent citation
1.51
Field Citation Ratio
n/a
Relative Citation Ratio
Statistics & downloads :
Abstract page: 113 Full-text PDF : 74 References: 32