Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 29, Issue 2, Pages 211–220
DOI: https://doi.org/10.12958/adm429
(Mi adm753)
 

RESEARCH ARTICLE

Attached primes and annihilators of top local cohomology modules defined by a pair of ideals

S. Karimia, Sh. Payrovib

a Department of Mathematics, Payame Noor University, 19395-3679, Tehran, Iran
b Department of Mathematics, Imam Khomeini International University, 34149-1-6818, Qazvin, Iran
References:
Abstract: Assume that $R$ is a complete Noetherian local ring and $M$ is a non-zero finitely generated $R$-module of dimension $n=\dim(M)\geq 1$. It is shown that any non-empty subset $T$ of $\mathrm{Assh}(M)$ can be expressed as the set of attached primes of the top local cohomology modules $H_{I,J}^n(M)$ for some proper ideals $I,J$ of $R$. Moreover, for ideals $I, J=\bigcap_ {\mathfrak p\in \mathrm{Att}_R(H_{I}^n(M))}\mathfrak p$ and $J'$ of $R$ it is proved that $T=\mathrm{Att}_R(H_{I,J}^n(M))=\mathrm{Att}_R(H_{I,J'}^n(M))$ if and only if $J'\subseteq J$. Let $H_{I,J}^n(M)\neq 0$. It is shown that there exists $Q\in \mathrm{Supp}(M)$ such that $\dim(R/Q)=1$ and $H_Q^n(R/{\mathfrak p})\neq 0$, for each $\mathfrak p \in \mathrm{Att}_R(H_{I,J}^n(M))$. In addition, we prove that if $I$ and $J$ are two proper ideals of a Noetherian local ring $R$, then $\mathrm{Ann}_R(H_{I,J}^{n}(M))=\mathrm{Ann}_R(M/{T_R(I,J,M)})$, where $T_R(I,J,M)$ is the largest submodule of $M$ with $\mathrm{cd}(I,J,T_R(I,J,M))<\mathrm{cd}(I,J,M)$, here $\mathrm{cd}(I,J,M)$ is the cohomological dimension of $M$ with respect to $I$ and $J$. This result is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].
Keywords: associated prime ideals, attached prime ideals, top local cohomology modules.
Received: 13.03.2017
Bibliographic databases:
Document Type: Article
MSC: 13D45, 14B15
Language: English
Citation: S. Karimi, Sh. Payrovi, “Attached primes and annihilators of top local cohomology modules defined by a pair of ideals”, Algebra Discrete Math., 29:2 (2020), 211–220
Citation in format AMSBIB
\Bibitem{KarPay20}
\by S.~Karimi, Sh.~Payrovi
\paper Attached primes and annihilators of top local cohomology modules defined by a pair of ideals
\jour Algebra Discrete Math.
\yr 2020
\vol 29
\issue 2
\pages 211--220
\mathnet{http://mi.mathnet.ru/adm753}
\crossref{https://doi.org/10.12958/adm429}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548734400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088573459}
Linking options:
  • https://www.mathnet.ru/eng/adm753
  • https://www.mathnet.ru/eng/adm/v29/i2/p211
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024