|
This article is cited in 1 scientific paper (total in 1 paper)
RESEARCH ARTICLE
On the structure of Leibniz algebras whose subalgebras are ideals or core-free
V. A. Ñhupordiaa, L. A. Kurdachenkoa, N. N. Semkob a Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine
b University of the State Fiscal Service of Ukraine, 31 Universitetskaya str., 08205, Irpin, Ukraine
Abstract:
An algebra $L$ over a field $F$ is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: $[[a, b], c] = [a, [b, c]] - [b, [a, c]]$ for all $a, b, c \in L$. Leibniz algebras are generalizations of Lie algebras. A subalgebra $S$ of a Leibniz algebra $L$ is called a core-free, if $S$ does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
Keywords:
Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra.
Received: 22.01.2020
Citation:
V. A. Ñhupordia, L. A. Kurdachenko, N. N. Semko, “On the structure of Leibniz algebras whose subalgebras are ideals or core-free”, Algebra Discrete Math., 29:2 (2020), 180–194
Linking options:
https://www.mathnet.ru/eng/adm751 https://www.mathnet.ru/eng/adm/v29/i2/p180
|
Statistics & downloads: |
Abstract page: | 67 | Full-text PDF : | 34 | References: | 25 |
|