Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 29, Issue 2, Pages 180–194
DOI: https://doi.org/10.12958/adm1533
(Mi adm751)
 

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

On the structure of Leibniz algebras whose subalgebras are ideals or core-free

V. A. Ñhupordiaa, L. A. Kurdachenkoa, N. N. Semkob

a Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine
b University of the State Fiscal Service of Ukraine, 31 Universitetskaya str., 08205, Irpin, Ukraine
Full-text PDF (360 kB) Citations (1)
References:
Abstract: An algebra $L$ over a field $F$ is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: $[[a, b], c] = [a, [b, c]] - [b, [a, c]]$ for all $a, b, c \in L$. Leibniz algebras are generalizations of Lie algebras. A subalgebra $S$ of a Leibniz algebra $L$ is called a core-free, if $S$ does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
Keywords: Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra.
Received: 22.01.2020
Bibliographic databases:
Document Type: Article
MSC: 17A32, 17A60, 17A99
Language: English
Citation: V. A. Ñhupordia, L. A. Kurdachenko, N. N. Semko, “On the structure of Leibniz algebras whose subalgebras are ideals or core-free”, Algebra Discrete Math., 29:2 (2020), 180–194
Citation in format AMSBIB
\Bibitem{ÑhuKurSem20}
\by V.~A.~Ñhupordia, L.~A.~Kurdachenko, N.~N.~Semko
\paper On the structure of Leibniz algebras whose subalgebras are ideals or core-free
\jour Algebra Discrete Math.
\yr 2020
\vol 29
\issue 2
\pages 180--194
\mathnet{http://mi.mathnet.ru/adm751}
\crossref{https://doi.org/10.12958/adm1533}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548734400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087573796}
Linking options:
  • https://www.mathnet.ru/eng/adm751
  • https://www.mathnet.ru/eng/adm/v29/i2/p180
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :29
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024