Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 29, Issue 1, Pages 117–128
DOI: https://doi.org/10.12958/adm1317
(Mi adm744)
 

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

Linear groups saturated by subgroups of finite central dimension

N. N. Semko, L. V. Skaskiv, O. A. Yarovaya

Department of Mathematics, University of State Fiscal Service of Ukraine, Universytetska street 31, Irpin, Kyiv region, Ukraine
Full-text PDF (343 kB) Citations (1)
References:
Abstract: Let $F$ be a field, $A$ be a vector space over $F$ and $G$ be a subgroup of $\mathrm{GL}(F,A)$. We say that $G$ has a dense family of subgroups, having finite central dimension, if for every pair of subgroups $H$, $K$ of $G$ such that $H\leqslant K$ and $H$ is not maximal in $K$ there exists a subgroup $L$ of finite central dimension such that $H\leqslant L\leqslant K$. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.
Keywords: linear group, infinite group, infinite dimensional linear group, dense family of subgroups, locally soluble group, finite central dimension.
Received: 13.01.2019
Bibliographic databases:
Document Type: Article
MSC: Primary 20E15, 20F16; Secondary 20E25, 20E34, 20F22, 20F50
Language: English
Citation: N. N. Semko, L. V. Skaskiv, O. A. Yarovaya, “Linear groups saturated by subgroups of finite central dimension”, Algebra Discrete Math., 29:1 (2020), 117–128
Citation in format AMSBIB
\Bibitem{SemSkaYar20}
\by N.~N.~Semko, L.~V.~Skaskiv, O.~A.~Yarovaya
\paper Linear groups saturated by subgroups of finite central dimension
\jour Algebra Discrete Math.
\yr 2020
\vol 29
\issue 1
\pages 117--128
\mathnet{http://mi.mathnet.ru/adm744}
\crossref{https://doi.org/10.12958/adm1317}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000533656800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084703273}
Linking options:
  • https://www.mathnet.ru/eng/adm744
  • https://www.mathnet.ru/eng/adm/v29/i1/p117
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :42
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024