Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 29, Issue 1, Pages 52–65
DOI: https://doi.org/10.12958/adm1165
(Mi adm738)
 

RESEARCH ARTICLE

Leibniz algebras with absolute maximal Lie subalgebras

G. R. Biyogmama, C. Tchekab

a Department of Mathematics, Georgia College & State University, Campus Box 17 Milledgeville, GA 31061-0490
b Department of Mathematics, University of Dschang, Dschang, Cameroun
References:
Abstract: A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their $\mathsf{Lie}$-center are greater than two, we refer to these Leibniz algebras as $s$-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz $s$-algebras of dimension up to five.
Keywords: Leibniz algebras, $s$-Leibniz algebras, $\mathsf{Lie}$-center.
Received: 15.05.2018
Bibliographic databases:
Document Type: Article
MSC: 17A32, 17B55, 18B99
Language: English
Citation: G. R. Biyogmam, C. Tcheka, “Leibniz algebras with absolute maximal Lie subalgebras”, Algebra Discrete Math., 29:1 (2020), 52–65
Citation in format AMSBIB
\Bibitem{BiyTch20}
\by G.~R.~Biyogmam, C.~Tcheka
\paper Leibniz algebras with absolute maximal Lie subalgebras
\jour Algebra Discrete Math.
\yr 2020
\vol 29
\issue 1
\pages 52--65
\mathnet{http://mi.mathnet.ru/adm738}
\crossref{https://doi.org/10.12958/adm1165}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000533656800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085119507}
Linking options:
  • https://www.mathnet.ru/eng/adm738
  • https://www.mathnet.ru/eng/adm/v29/i1/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024