Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2020, Volume 29, Issue 1, Pages 33–41
DOI: https://doi.org/10.12958/adm1530
(Mi adm736)
 

This article is cited in 6 scientific papers (total in 6 papers)

RESEARCH ARTICLE

A new characterization of finite $\sigma$-soluble $P\sigma T$-groups

N. M. Adarchenko

Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus
Full-text PDF (327 kB) Citations (6)
References:
Abstract: Let $\sigma =\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $G$ a finite group. $G$ is said to be $\sigma$-soluble if every chief factor $H/K$ of $G$ is a $\sigma_{i}$-group for some $i=i(H/K)$. A set ${\mathcal H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every member $\ne 1$ of ${\mathcal H}$ is a Hall $\sigma_{i}$-subgroup of $G$ for some $\sigma_{i}\in \sigma $ and ${\mathcal H}$ contains exactly one Hall $\sigma_{i}$-subgroup of $G$ for every $i$ such that $\sigma_{i}\cap \pi (G)\ne \varnothing$. A subgroup $A$ of $G$ is said to be ${\sigma}$-quasinormal or ${\sigma}$-permutable in $G$ if $G$ has a complete Hall $\sigma$-set $\mathcal H$ such that $AH^{x}=H^{x}A$ for all $x\in G$ and all $H\in \mathcal H$. We obtain a new characterization of finite $\sigma$-soluble groups $G$ in which $\sigma$-permutability is a transitive relation in $G$.
Keywords: finite group, $\sigma$-permutable subgroup, $P\sigma T$-group, $\sigma$-soluble group, $\sigma$-nilpotent group.
Received: 20.01.2020
Bibliographic databases:
Document Type: Article
MSC: 20D10, 20D15, 20D30
Language: English
Citation: N. M. Adarchenko, “A new characterization of finite $\sigma$-soluble $P\sigma T$-groups”, Algebra Discrete Math., 29:1 (2020), 33–41
Citation in format AMSBIB
\Bibitem{Ada20}
\by N.~M.~Adarchenko
\paper A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
\jour Algebra Discrete Math.
\yr 2020
\vol 29
\issue 1
\pages 33--41
\mathnet{http://mi.mathnet.ru/adm736}
\crossref{https://doi.org/10.12958/adm1530}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000533656800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084745378}
Linking options:
  • https://www.mathnet.ru/eng/adm736
  • https://www.mathnet.ru/eng/adm/v29/i1/p33
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :43
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024