Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2019, Volume 28, Issue 2, Pages 248–259 (Mi adm729)  

RESEARCH ARTICLE

Domination polynomial of clique cover product of graphs

Somayeh Jahari, Saeid Alikhani

Department of Mathematics, Yazd University, 89195-741, Yazd, Iran
References:
Abstract: Let G be a simple graph of order n. We prove that the domination polynomial of the clique cover product GCHV(H) is
D(GCH,x)=ki=1[((1+x)ni1)(1+x)|V(H)|+D(H,x)],
where each clique CiC has ni vertices. As an application, we study the D-equivalence classes of some families of graphs and, in particular, describe completely the D-equivalence classes of friendship graphs constructed by coalescing n copies of a cycle graph of length 3 with a common vertex.
Keywords: domination polynomial, D-equivalence class, clique cover, friendship graphs.
Funding agency Grant number
Iran National Science Foundation INSF-YAZD 96010014
The authors acknowledge the financial support from Iran National Science Foundation (INSF), research project INSF-YAZD 96010014.
Received: 02.02.2017
Revised: 11.08.2017
Document Type: Article
MSC: 05C60, 05C69
Language: English
Citation: Somayeh Jahari, Saeid Alikhani, “Domination polynomial of clique cover product of graphs”, Algebra Discrete Math., 28:2 (2019), 248–259
Citation in format AMSBIB
\Bibitem{JahAli19}
\by Somayeh~Jahari, Saeid~Alikhani
\paper Domination polynomial of~clique~cover~product~of~graphs
\jour Algebra Discrete Math.
\yr 2019
\vol 28
\issue 2
\pages 248--259
\mathnet{http://mi.mathnet.ru/adm729}
Linking options:
  • https://www.mathnet.ru/eng/adm729
  • https://www.mathnet.ru/eng/adm/v28/i2/p248
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :38
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025