Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2012, Volume 13, Issue 1, Pages 128–138 (Mi adm70)  

RESEARCH ARTICLE

The upper edge-to-vertex detour number of a graph

A. P. Santhakumaran, S. Athisayanathan

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, India
References:
Abstract: For two vertices $u$ and $v$ in a graph $G = (V, E)$, the detour distance $D(u, v)$ is the length of a longest $u$$v$ path in $G$. A $u$$v$ path of length $D(u, v)$ is called a $u$$v$ detour. For subsets $A$ and $B$ of $V$, the detour distance $D(A, B)$ is defined as $D(A, B) = \min\{D(x, y): x \in A$, $y \in B\}$. A $u$$v$ path of length $D(A, B)$ is called an $A$$B$ detour joining the sets $A$, $B \subseteq V$ where $u\in A$ and $v \in B$. A vertex $x$ is said to lie on an $A$$B$ detour if $x$ is a vertex of an $A$$B$ detour. A set $S\subseteq E$ is called an edge-to-vertex detour set if every vertex of $G$ is incident with an edge of $S$ or lies on a detour joining a pair of edges of $S$. The edge-to-vertex detour number ${dn}_{2}(G)$ of $G$ is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order ${dn}_{2}(G)$ is an edge-to-vertex detour basis of $G$. An edge-to-vertex detour set $S$ in a connected graph $G$ is called a minimal edge-to-vertex detour set of $G$ if no proper subset of $S$ is an edge-to-vertex detour set of $G$. The upper edge-to-vertex detour number   ${dn}_{2}^{+} (G)$ of $G$ is the maximum cardinality of a minimal edge-to-vertex detour set of $G$. The upper edge-to-vertex detour numbers of certain standard graphs are obtained. It is shown that for every pair $a$, $b$ of integers with $2 \le a \le b$, there exists a connected graph $G$ with $dn_{2}(G)=a$ and $dn_{2}^{+}(G)=b$.
Keywords: Detour, edge-to-vertex detour set, edge-to-vertex detour basis, edge-to-vertex detour number, upper edge-to-vertex detour number.
Received: 23.11.2011
Revised: 30.11.2011
Bibliographic databases:
Document Type: Article
MSC: 05C12
Language: English
Citation: A. P. Santhakumaran, S. Athisayanathan, “The upper edge-to-vertex detour number of a graph”, Algebra Discrete Math., 13:1 (2012), 128–138
Citation in format AMSBIB
\Bibitem{SanAth12}
\by A.~P.~Santhakumaran, S.~Athisayanathan
\paper The upper edge-to-vertex detour number of~a~graph
\jour Algebra Discrete Math.
\yr 2012
\vol 13
\issue 1
\pages 128--138
\mathnet{http://mi.mathnet.ru/adm70}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2963830}
\zmath{https://zbmath.org/?q=an:1257.05034}
Linking options:
  • https://www.mathnet.ru/eng/adm70
  • https://www.mathnet.ru/eng/adm/v13/i1/p128
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :105
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024