Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2019, Volume 27, Issue 1, Pages 70–74 (Mi adm693)  

RESEARCH ARTICLE

On free vector balleans

Igor Protasov, Ksenia Protasova

Department of Computer Science and Cybernetics, Kyiv University, Volodymyrska 64, 01033, Kyiv, Ukraine
References:
Abstract: A vector balleans is a vector space over $\mathbb{R}$ endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean $(X, \mathcal{E})$, there exists the unique free vector ballean $\mathbb{V}(X, \mathcal{E})$ and describe the coarse structure of $\mathbb{V}(X, \mathcal{E})$. It is shown that normality of $\mathbb{V}(X, \mathcal{E})$ is equivalent to metrizability of $(X, \mathcal{E})$.
Keywords: coarse structure, ballean, vector ballean, free vector ballean.
Received: 10.03.2019
Document Type: Article
MSC: 46A17, 54E35
Language: English
Citation: Igor Protasov, Ksenia Protasova, “On free vector balleans”, Algebra Discrete Math., 27:1 (2019), 70–74
Citation in format AMSBIB
\Bibitem{ProPro19}
\by Igor~Protasov, Ksenia~Protasova
\paper On free vector balleans
\jour Algebra Discrete Math.
\yr 2019
\vol 27
\issue 1
\pages 70--74
\mathnet{http://mi.mathnet.ru/adm693}
Linking options:
  • https://www.mathnet.ru/eng/adm693
  • https://www.mathnet.ru/eng/adm/v27/i1/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024