Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2018, Volume 26, Issue 2, Pages 170–189 (Mi adm679)  

RESEARCH ARTICLE

Modules in which every surjective endomorphism has a $\delta$-small kernel

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel, Saboura Dolati Pishhesari

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran
References:
Abstract: In this paper, we introduce the notion of $\delta$-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of $\delta$-Hopfian modules by proving that a ring $R$ is semisimple if and only if every $R$-module is $\delta$-Hopfian. Also, we show that for a ring $R$, $\delta(R)=J(R)$ if and only if for all $R$-modules, the conditions $\delta$-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that $\delta$-Hopfian property is a Morita invariant. Further, the $\delta$-Hopficity of modules over truncated polynomial and triangular matrix rings are considered.
Keywords: Dedekind finite modules, Hopfian modules, generalized Hopfian modules, $\delta$-Hopfian modules.
Received: 15.12.2016
Revised: 18.10.2018
Document Type: Article
MSC: 16D10, 16D40, 16D90
Language: English
Citation: Shahabaddin Ebrahimi Atani, Mehdi Khoramdel, Saboura Dolati Pishhesari, “Modules in which every surjective endomorphism has a $\delta$-small kernel”, Algebra Discrete Math., 26:2 (2018), 170–189
Citation in format AMSBIB
\Bibitem{AtaKhoPis18}
\by Shahabaddin~Ebrahimi~Atani, Mehdi~Khoramdel, Saboura~Dolati~Pishhesari
\paper Modules in which every surjective endomorphism has a $\delta$-small kernel
\jour Algebra Discrete Math.
\yr 2018
\vol 26
\issue 2
\pages 170--189
\mathnet{http://mi.mathnet.ru/adm679}
Linking options:
  • https://www.mathnet.ru/eng/adm679
  • https://www.mathnet.ru/eng/adm/v26/i2/p170
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :86
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024