Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2018, Volume 26, Issue 1, Pages 90–96 (Mi adm672)  

RESEARCH ARTICLE

On finite groups with Hall normally embedded Schmidt subgroups

Viktoryia N. Knyahina, Victor S. Monakhov

Department of Mathematics, Francisk Skorina Gomel State University, Sovetskaya str., 104, Gomel 246019, Belarus
References:
Abstract: A subgroup $H$ of a finite group $G$ is said to be Hall normally embedded in $G$ if there is a normal subgroup $N$ of $G$ such that $H$ is a Hall subgroup of $N$. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group $G$ is Hall normally embedded in $G$, then the derived subgroup of $G$ is nilpotent.
Keywords: finite group, Hall subgroup, normal subgroup, derived subgroup, nilpotent subgroup.
Received: 20.04.2018
Document Type: Article
MSC: 20E28, 20E32, 20E34
Language: English
Citation: Viktoryia N. Knyahina, Victor S. Monakhov, “On finite groups with Hall normally embedded Schmidt subgroups”, Algebra Discrete Math., 26:1 (2018), 90–96
Citation in format AMSBIB
\Bibitem{KnyMon18}
\by Viktoryia~N.~Knyahina, Victor~S.~Monakhov
\paper On finite groups with Hall normally embedded Schmidt subgroups
\jour Algebra Discrete Math.
\yr 2018
\vol 26
\issue 1
\pages 90--96
\mathnet{http://mi.mathnet.ru/adm672}
Linking options:
  • https://www.mathnet.ru/eng/adm672
  • https://www.mathnet.ru/eng/adm/v26/i1/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :56
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024