Processing math: 100%
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2018, Volume 25, Issue 2, Pages 188–199 (Mi adm654)  

RESEARCH ARTICLE

On k-graceful labeling of pendant edge extension of complete bipartite graphs

Soumya Bhoumik, Sarbari Mitra

Fort Hays State University, 600 Park St, Hays, KS, USA
References:
Abstract: For any two positive integers m,n, we denote the graph Km,nK1 by G. Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a k-graceful graph for k2. In this paper we prove his conjecture for nm<n2+kn+r.
Keywords: k-graceful labeling, complete bipartite graph, corona, 1-crown.
Received: 19.05.2016
Document Type: Article
MSC: 05C78
Language: English
Citation: Soumya Bhoumik, Sarbari Mitra, “On k-graceful labeling of pendant edge extension of complete bipartite graphs”, Algebra Discrete Math., 25:2 (2018), 188–199
Citation in format AMSBIB
\Bibitem{BhoMit18}
\by Soumya~Bhoumik, Sarbari~Mitra
\paper On $k$-graceful labeling of pendant edge extension of complete bipartite graphs
\jour Algebra Discrete Math.
\yr 2018
\vol 25
\issue 2
\pages 188--199
\mathnet{http://mi.mathnet.ru/adm654}
Linking options:
  • https://www.mathnet.ru/eng/adm654
  • https://www.mathnet.ru/eng/adm/v25/i2/p188
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :82
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025