Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2012, Volume 13, Issue 1, Pages 52–58 (Mi adm65)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

Mohsen Ghasemi

Department of Mathematics, Urmia University, Urmia 57135, Iran
Full-text PDF (211 kB) Citations (2)
References:
Abstract: A Cayley graph $X=\mathrm{Cay}(G,S)$ is called normal for $G$ if the right regular representation $R(G)$ of $G$ is normal in the full automorphism group $\mathrm{Aut}(X)$ of $X$. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group $G$ are normal when $(|G|, 2)=(|G|,3)=1$, and $X$ is not isomorphic to either Cay$(G,S)$, where $|G|=5^n$, and $|\mathrm{Aut}(X)|=2^m.3.5^n$, where $m \in \{2,3\}$ and $n\geq 3$, or Cay$(G,S)$ where $|G|=5q^n$ ($q$ is prime) and $|\mathrm{Aut}(X)|=2^m.3.5.q^n$, where $q\geq 7$, $m \in \{2,3\}$ and $n\geq 1$.
Keywords: Cayley graph, normal Cayley graph, minimal non-abelian group.
Received: 13.10.2011
Revised: 27.11.2011
Bibliographic databases:
Document Type: Article
MSC: 05C25, 20B25
Language: English
Citation: Mohsen Ghasemi, “Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups”, Algebra Discrete Math., 13:1 (2012), 52–58
Citation in format AMSBIB
\Bibitem{Gha12}
\by Mohsen~Ghasemi
\paper Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
\jour Algebra Discrete Math.
\yr 2012
\vol 13
\issue 1
\pages 52--58
\mathnet{http://mi.mathnet.ru/adm65}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2963825}
\zmath{https://zbmath.org/?q=an:1257.05058}
Linking options:
  • https://www.mathnet.ru/eng/adm65
  • https://www.mathnet.ru/eng/adm/v13/i1/p52
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:640
    Full-text PDF :106
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024