Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2012, Volume 13, Issue 1, Pages 26–42 (Mi adm63)  

This article is cited in 6 scientific papers (total in 6 papers)

RESEARCH ARTICLE

Algebra in superextensions of semilattices

Taras Banakhab, Volodymyr Gavrylkivc

a Ivan Franko National University of Lviv, Ukraine
b Jan Kochanowski University, Kielce, Poland
c Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Full-text PDF (254 kB) Citations (6)
References:
Abstract: Given a semilattice $X$ we study the algebraic properties of the semigroup $\upsilon(X)$ of upfamilies on $X$. The semigroup $\upsilon(X)$ contains the Stone–Čech extension $\beta(X)$, the superextension $\lambda(X)$, and the space of filters $\varphi(X)$ on $X$ as closed subsemigroups. We prove that $\upsilon(X)$ is a semilattice iff $\lambda(X)$ is a semilattice iff $\varphi(X)$ is a semilattice iff the semilattice $X$ is finite and linearly ordered. We prove that the semigroup $\beta(X)$ is a band if and only if $X$ has no infinite antichains, and the semigroup $\lambda(X)$ is commutative if and only if $X$ is a bush with finite branches.
Keywords: semilattice, band, commutative semigroup, the space of upfamilies, the space of filters, the space of maximal linked systems, superextension.
Received: 05.10.2011
Revised: 19.01.2012
Bibliographic databases:
Document Type: Article
MSC: 06A12, 20M10
Language: English
Citation: Taras Banakh, Volodymyr Gavrylkiv, “Algebra in superextensions of semilattices”, Algebra Discrete Math., 13:1 (2012), 26–42
Citation in format AMSBIB
\Bibitem{BanGav12}
\by Taras~Banakh, Volodymyr~Gavrylkiv
\paper Algebra in superextensions of semilattices
\jour Algebra Discrete Math.
\yr 2012
\vol 13
\issue 1
\pages 26--42
\mathnet{http://mi.mathnet.ru/adm63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2963823}
\zmath{https://zbmath.org/?q=an:06120560}
Linking options:
  • https://www.mathnet.ru/eng/adm63
  • https://www.mathnet.ru/eng/adm/v13/i1/p26
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :167
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024