Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2017, Volume 23, Issue 2, Pages 223–229 (Mi adm605)  

RESEARCH ARTICLE

Finite groups admitting a dihedral group of automorphisms

Gülin Ercana, İsmail Ş. Güloğlub

a Department of Mathematics, Middle East Technical University, Ankara, Turkey
b Department of Mathematics, Doğuş University, Istanbul, Turkey
References:
Abstract: Let $D=\langle \alpha, \beta \rangle$ be a dihedral group generated by the involutions $\alpha$ and $\beta$ and let $F=\langle \alpha \beta \rangle$. Suppose that $D$ acts on a finite group $G$ by automorphisms in such a way that $C_G(F)=1$. In the present paper we prove that the nilpotent length of the group $G$ is equal to the maximum of the nilpotent lengths of the subgroups $C_G(\alpha)$ and $C_G(\beta)$.
Keywords: dihedral group, fixed points, nilpotent length.
Funding agency Grant number
Scientific and Technological Research Council of Turkey (TÜBITAK) 114F223
This work has been supported by the Research Project TÜBİTAK 114F223.
Received: 23.11.2016
Bibliographic databases:
Document Type: Article
MSC: 20D10, 20D15, 20D45
Language: English
Citation: Gülin Ercan, İsmail Ş. Güloğlu, “Finite groups admitting a dihedral group of automorphisms”, Algebra Discrete Math., 23:2 (2017), 223–229
Citation in format AMSBIB
\Bibitem{ErcGul17}
\by G\"ulin~Ercan, {\. I}smail~\c S.~G\"ulo{\u g}lu
\paper Finite groups admitting a dihedral group of automorphisms
\jour Algebra Discrete Math.
\yr 2017
\vol 23
\issue 2
\pages 223--229
\mathnet{http://mi.mathnet.ru/adm605}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000406416100005}
Linking options:
  • https://www.mathnet.ru/eng/adm605
  • https://www.mathnet.ru/eng/adm/v23/i2/p223
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :64
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024