Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2017, Volume 23, Issue 1, Pages 180–193 (Mi adm599)  

This article is cited in 11 scientific papers (total in 11 papers)

RESEARCH ARTICLE

A new way to construct 1-singular Gelfand-Tsetlin modules

Pablo Zadunaisky

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP, Brasil
References:
Abstract: We present a simplified way to construct the Gelfand-Tsetlin modules over gl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points.
Keywords: Gelfand-Tsetlin modules, Gelfand-Tsetlin bases, tableaux realization.
Funding agency Grant number
Fundação de Amparo à Pesquisa do Estado de São Paulo 2016-25984-1
The author is a FAPESP PostDoc Fellow, grant 2016-25984-1.
Received: 21.03.2017
Revised: 30.03.2017
Bibliographic databases:
Document Type: Article
MSC: 17B10
Language: English
Citation: Pablo Zadunaisky, “A new way to construct 1-singular Gelfand-Tsetlin modules”, Algebra Discrete Math., 23:1 (2017), 180–193
Citation in format AMSBIB
\Bibitem{Zad17}
\by Pablo~Zadunaisky
\paper A new way to construct $1$-singular Gelfand-Tsetlin modules
\jour Algebra Discrete Math.
\yr 2017
\vol 23
\issue 1
\pages 180--193
\mathnet{http://mi.mathnet.ru/adm599}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000398979400009}
Linking options:
  • https://www.mathnet.ru/eng/adm599
  • https://www.mathnet.ru/eng/adm/v23/i1/p180
  • This publication is cited in the following 11 articles:
    1. Futorny V., “Representations of Lie Algebras”, Sao Paulo J. Math. Sci., 16:1 (2022), 131–156  crossref  mathscinet  isi  scopus
    2. V. Futorny, D. Grantcharov, L. E. Ramirez, “Classification of simple Gelfand-Tsetlin modules of sl(3)”, Bull. Math. Sci., 11:03 (2021), 2130001  crossref  mathscinet  isi  scopus
    3. N. Early, V. Mazorchuk, E. Vishnyakova, “Canonical Gelfand-Zeitlin modules over orthogonal Gelfand-Zeitlin algebras”, Int. Math. Res. Notices, 2020:20 (2020), 6947–6966  crossref  mathscinet  zmath  isi  scopus
    4. V. Futorny, D. Grantcharov, L. E. Ramirez, P. Zadunaisky, “Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of verma modules”, J. Algebra, 556 (2020), 412–436  crossref  mathscinet  zmath  isi  scopus
    5. V. Futorny, D. Grantcharov, L. E. Ramirez, P. Zadunaisky, “Gelfand-Tsetlin theory for rational Galois algebras”, Isr. J. Math., 239:1 (2020), 99–128  crossref  mathscinet  zmath  isi  scopus
    6. J. T. Hartwig, “Principal Galois orders and Gelfand-Zeitlin modules”, Adv. Math., 359 (2020), 106806  crossref  mathscinet  zmath  isi  scopus
    7. V. Futorny, L. Krizka, “Geometric construction of Gelfand-Tsetlin modules over simple lie algebras”, J. Pure Appl. Algebr., 223:11 (2019), 4901–4924  crossref  mathscinet  zmath  isi  scopus
    8. V. Futorny, L. E. Ramirez, J. Zhang, “Combinatorial construction of Gelfand-Tsetlin modules for gl(n)”, Adv. Math., 343 (2019), 681–711  crossref  mathscinet  zmath  isi  scopus
    9. L. E. Ramirez, P. Zadunaisky, “Gelfand–Tsetlin modules over gl(n) with arbitrary characters”, J. Algebra, 502 (2018), 328–346  crossref  mathscinet  zmath  isi  scopus
    10. V. Futorny, L. E. Ramirez, J. Zhang, “Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations”, J. Algebra, 499 (2018), 375–396  crossref  mathscinet  zmath  isi  scopus
    11. E. Vishnyakova, “A geometric approach to 1-singular Gelfand–Tsetlin gln-modules”, Differ. Geom. Appl., 56 (2018), 155–160  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :75
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025