Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2017, Volume 23, Issue 1, Pages 62–137 (Mi adm597)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories

Manuel Saorín

Departemento de Matemáticas, Universidad de Murcia, Aptdo. 4021, 30100 Espinardo, Murcia, Spain
Full-text PDF (793 kB) Citations (1)
References:
Abstract: We develop the theory $\mathrm{dg}$ algebras with enough idempotents and their $\mathrm{dg}$ modules and show their equivalence with that of small $\mathrm{dg}$ categories and their $\mathrm{dg}$ modules. We introduce the concept of $\mathrm{dg}$ adjunction and show that the classical covariant tensor-Hom and contravariant Hom-Hom adjunctions of modules over associative unital algebras are extended as $\mathrm{dg}$ adjunctions between categories of $\mathrm{dg}$ bimodules. The corresponding adjunctions of the associated triangulated functors are studied, and we investigate when they are one-sided parts of bifunctors which are triangulated on both variables. We finally show that, for a $\mathrm{dg}$ algebra with enough idempotents, the perfect left and right derived categories are dual to each other.
Keywords: $\mathrm{dg}$ algebra, $\mathrm{dg}$ module, $\mathrm{dg}$ category, $\mathrm{dg}$ functor, $\mathrm{dg}$ adjunction, homotopy category, derived category, derived functor.
Funding agency Grant number
Ministerio de Economía y Competitividad MTM201346837-P
MTM201677445-P
Fundación Séneca 19880/GERM/15
Federación Española de Enfermedades Raras
This work is backed by research projects from the Ministerio de Economía y Competitividad of Spain (MTM201346837-P and MTM201677445-P) and the Fundación Séneca of Murcia (19880/GERM/15), both with a part of FEDER funds.
Received: 14.12.2016
Bibliographic databases:
Document Type: Article
MSC: Primary 16E45, 18E30; Secondary 16E35, 18E25
Language: English
Citation: Manuel Saorín, “Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories”, Algebra Discrete Math., 23:1 (2017), 62–137
Citation in format AMSBIB
\Bibitem{Sao17}
\by Manuel~Saor{\'\i}n
\paper Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories
\jour Algebra Discrete Math.
\yr 2017
\vol 23
\issue 1
\pages 62--137
\mathnet{http://mi.mathnet.ru/adm597}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000398979400007}
Linking options:
  • https://www.mathnet.ru/eng/adm597
  • https://www.mathnet.ru/eng/adm/v23/i1/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :127
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024