|
Algebra and Discrete Mathematics, 2016, Volume 22, Issue 2, Pages 240–261
(Mi adm586)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
RESEARCH ARTICLE
A horizontal mesh algorithm for posets with positive Tits form
Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki, Grzegorz Marczak Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Abstract:
Following our paper [Fund. Inform. 136 (2015), 345–379], we define a horizontal mesh algorithm that constructs a $\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\mathcal{R}}_I,\widehat{\Phi}_I)$ consisting of $\widehat{\Phi}_I$-orbits of the finite set $\widehat{\mathcal{R}}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of a poset $I$ with positive definite Tits quadratic form $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma(\widehat{\mathcal{R}}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver $\Gamma({\mathcal{R}}_D,{\Phi}_D)$ of $\widehat{\Phi}_D$-orbits of the finite set ${\mathcal{R}}_D$ of roots of a simply laced Dynkin quiver $D$ associated with $I$.
Keywords:
poset, combinatorial algorithm, Dynkin diagram, mesh geometry of roots, quadratic form.
Received: 22.12.2015 Revised: 05.01.2016
Citation:
Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki, Grzegorz Marczak, “A horizontal mesh algorithm for posets with positive Tits form”, Algebra Discrete Math., 22:2 (2016), 240–261
Linking options:
https://www.mathnet.ru/eng/adm586 https://www.mathnet.ru/eng/adm/v22/i2/p240
|
Statistics & downloads: |
Abstract page: | 425 | Full-text PDF : | 88 | References: | 49 |
|