Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2016, Volume 22, Issue 1, Pages 1–10 (Mi adm571)  

RESEARCH ARTICLE

On colouring integers avoiding $t$-AP distance-sets

Tanbir Ahmed

Laboratoire de Combinatoire et d'Informatique Mathématique, UQAM, Montréal, Canada
References:
Abstract: A $t$-AP is a sequence of the form $a,a+d,\ldots, a+(t-1)d$, where $a,d\in \mathbb{Z}$. Given a finite set $X$ and positive integers $d$, $t$, $a_1,a_2,\ldots,a_{t-1}$, define $\nu(X,d) = |\{(x,y):{x,y\in{X}},{y>x}, {y-x=d}\}|$, $(a_1,a_2,\ldots,a_{t-1};d) =$ a collection $X$ s.t. $\nu(X,d\cdot{i})\geq a_i$ for $1\leq i\leq t-1$.
In this paper, we investigate the structure of sets with bounded number of pairs with certain gaps. Let $(t-1,t-2,\ldots,1; d)$ be called a $t$-AP distance-set of size at least $t$. A $k$-colouring of integers $1,2,\ldots, n$ is a mapping $\{1,2,\ldots,n\}\rightarrow \{0,1,\ldots,k-1\}$ where $0,1,\ldots,k-1$ are colours. Let $ww(k,t)$ denote the smallest positive integer $n$ such that every $k$-colouring of $1,2,\ldots,n$ contains a monochromatic $t$-AP distance-set for some $d>0$. We conjecture that $ww(2,t)\geq t^2$ and prove the lower bound for most cases. We also generalize the notion of $ww(k,t)$ and prove several lower bounds.
Keywords: distance sets, colouring integers, sets and sequences.
Received: 05.10.2015
Revised: 15.01.2016
Bibliographic databases:
Document Type: Article
MSC: 05D10
Language: English
Citation: Tanbir Ahmed, “On colouring integers avoiding $t$-AP distance-sets”, Algebra Discrete Math., 22:1 (2016), 1–10
Citation in format AMSBIB
\Bibitem{Ahm16}
\by Tanbir~Ahmed
\paper On colouring integers avoiding $t$-AP~distance-sets
\jour Algebra Discrete Math.
\yr 2016
\vol 22
\issue 1
\pages 1--10
\mathnet{http://mi.mathnet.ru/adm571}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3573541}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392708800001}
Linking options:
  • https://www.mathnet.ru/eng/adm571
  • https://www.mathnet.ru/eng/adm/v22/i1/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :68
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024