Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2016, Volume 21, Issue 2, Pages 282–286 (Mi adm568)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

The comb-like representations of cellular ordinal balleans

Igor Protasov, Ksenia Protasova

Taras Shevchenko National University of Kyiv, Department of Cybernetics, Volodymyrska 64, 01033, Kyiv Ukraine
Full-text PDF (279 kB) Citations (2)
References:
Abstract: Given two ordinal $\lambda$ and $\gamma$, let $f:[0,\lambda) \rightarrow [0,\gamma)$ be a function such that, for each $\alpha<\gamma$, $\sup\{f(t): t\in[0, \alpha]\}<\gamma.$ We define a mapping $d_{f}: [0,\lambda)\times [0,\lambda) \longrightarrow [0,\gamma)$ by the rule: if $x<y$ then $d_{f}(x,y)= d_{f}(y,x)= \sup\{f(t): t\in(x,y]\}$, $d(x,x)=0$. The pair $([0,\lambda), d_{f})$ is called a $\gamma-$comb defined by $f$. We show that each cellular ordinal ballean can be represented as a $\gamma-$comb. In General Asymptology, cellular ordinal balleans play a part of ultrametric spaces.
Keywords: ultrametric space, cellular ballean, ordinal ballean, $(\lambda,\gamma)$-comb.
Received: 29.01.2016
Bibliographic databases:
Document Type: Article
MSC: 54A05, 54E15, 54E30
Language: English
Citation: Igor Protasov, Ksenia Protasova, “The comb-like representations of cellular ordinal balleans”, Algebra Discrete Math., 21:2 (2016), 282–286
Citation in format AMSBIB
\Bibitem{ProPro16}
\by Igor~Protasov, Ksenia~Protasova
\paper The comb-like representations of cellular ordinal balleans
\jour Algebra Discrete Math.
\yr 2016
\vol 21
\issue 2
\pages 282--286
\mathnet{http://mi.mathnet.ru/adm568}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3537451}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382847700009}
Linking options:
  • https://www.mathnet.ru/eng/adm568
  • https://www.mathnet.ru/eng/adm/v21/i2/p282
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :51
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024