Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2015, Volume 19, Issue 1, Pages 48–57 (Mi adm506)  

RESEARCH ARTICLE

Symmetries of automata

Attila Egri-Nagya, Chrystopher L. Nehanivb

a Centre for Research in Mathematics, University of Western Sydney
b Centre for Computer Science \& Informatics Research, University of Hertfordshire
References:
Abstract: For a given reachable automaton $\mathcal{A}$, we prove that the (state-) endomorphism monoid $\operatorname{End}({\mathcal{A}})$ divides its characteristic monoid $M({\mathcal{A}})$. Hence so does its (state-)automorphism group $\operatorname{Aut}({\mathcal{A}})$, and, for finite $\mathcal{A}$, $\operatorname{Aut}(\mathcal{A})$ is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group $G$ of $\mathcal{A}$, a finite automaton $\mathcal{A}$ (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of $M(\mathcal{A})$, namely the symmetry group $G$ and the quotient of $M(\mathcal{A})$ induced by the action of $G$. Moreover, this division is an embedding if $M(\mathcal{A})$ is transitive on states of $\mathcal{A}$. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.
Funding agency Grant number
European Union's Sixth Framework Programme IST-034824
European Union's Seventh Framework Programme CNECT-318202
This work was in part supported by the EU FP6 Project OPAALS (Contract no. IST-034824) and the EU FP7 Project BIOMICS (contract no. CNECT-318202).
Received: 02.05.2014
Revised: 12.01.2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Attila Egri-Nagy, Chrystopher L. Nehaniv, “Symmetries of automata”, Algebra Discrete Math., 19:1 (2015), 48–57
Citation in format AMSBIB
\Bibitem{EgrNeh15}
\by Attila~Egri-Nagy, Chrystopher~L.~Nehaniv
\paper Symmetries of automata
\jour Algebra Discrete Math.
\yr 2015
\vol 19
\issue 1
\pages 48--57
\mathnet{http://mi.mathnet.ru/adm506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376339}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000209846200006}
Linking options:
  • https://www.mathnet.ru/eng/adm506
  • https://www.mathnet.ru/eng/adm/v19/i1/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :108
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024