|
Algebra and Discrete Mathematics, 2014, Volume 18, Issue 2, Pages 186–202
(Mi adm491)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
RESEARCH ARTICLE
Exponent matrices and Frobenius rings
M. A. Dokuchaeva, M. V. Kasyanukb, M. A. Khibinac, V. V. Kirichenkob a Departamento de Matematica, Universidade de São Paulo
b National Taras Shevchenko University of Kyiv, The Faculty of Mechanics and Mathematics
c Institute for Technical Thermal Physics, National Academy of Sciences of Ukraine
Abstract:
We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation $\sigma \in S_{n}$ there exists a countable set of indecomposable Frobenius semidistributive rings
$A_{m}$ with Nakayama permutation $ \sigma$.
Keywords:
exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring.
Received: 04.12.2014 Revised: 04.12.2014
Citation:
M. A. Dokuchaev, M. V. Kasyanuk, M. A. Khibina, V. V. Kirichenko, “Exponent matrices and Frobenius rings”, Algebra Discrete Math., 18:2 (2014), 186–202
Linking options:
https://www.mathnet.ru/eng/adm491 https://www.mathnet.ru/eng/adm/v18/i2/p186
|
Statistics & downloads: |
Abstract page: | 180 | Full-text PDF : | 54 | References: | 45 |
|