Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2014, Volume 18, Issue 1, Pages 149–156 (Mi adm487)  

RESEARCH ARTICLE

Effective ring

B. V. Zabavsky, B. M. Kuznitska

Department of Mechanics and Mathematics, Ivan Franko National Univ., Lviv, Ukraine
References:
Abstract: In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
Keywords: Bezout ring, exchange ring, clean ring, effective ring, elementary divisor ring, idempotent of stable range 1, neat ring.
Received: 04.01.2014
Revised: 26.07.2014
Bibliographic databases:
Document Type: Article
MSC: 13F99
Language: English
Citation: B. V. Zabavsky, B. M. Kuznitska, “Effective ring”, Algebra Discrete Math., 18:1 (2014), 149–156
Citation in format AMSBIB
\Bibitem{ZabKuz14}
\by B.~V.~Zabavsky, B.~M.~Kuznitska
\paper Effective ring
\jour Algebra Discrete Math.
\yr 2014
\vol 18
\issue 1
\pages 149--156
\mathnet{http://mi.mathnet.ru/adm487}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3283028}
Linking options:
  • https://www.mathnet.ru/eng/adm487
  • https://www.mathnet.ru/eng/adm/v18/i1/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025