Loading [MathJax]/jax/output/SVG/config.js
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2014, Volume 18, Issue 1, Pages 42–49 (Mi adm480)  

This article is cited in 16 scientific papers (total in 16 papers)

RESEARCH ARTICLE

Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups

Sriparna Chattopadhyay, Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
References:
Abstract: The power graph of a finite group is the graph whose vertices are the elements of the group and two distinct vertices are adjacent if and only if one is an integral power of the other. In this paper we discuss the planarity and vertex connectivity of the power graphs of finite cyclic, dihedral and dicyclic groups. Also we apply connectivity concept to prove that the power graphs of both dihedral and dicyclic groups are not Hamiltonian.
Keywords: power graph, connectivity, planarity, cyclic group, dihedral group, dicyclic group.
Received: 14.07.2012
Revised: 04.04.2013
Bibliographic databases:
Document Type: Article
MSC: 05C25, 05C10, 05C40
Language: English
Citation: Sriparna Chattopadhyay, Pratima Panigrahi, “Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups”, Algebra Discrete Math., 18:1 (2014), 42–49
Citation in format AMSBIB
\Bibitem{ChaPan14}
\by Sriparna~Chattopadhyay, Pratima~Panigrahi
\paper Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups
\jour Algebra Discrete Math.
\yr 2014
\vol 18
\issue 1
\pages 42--49
\mathnet{http://mi.mathnet.ru/adm480}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3280255}
Linking options:
  • https://www.mathnet.ru/eng/adm480
  • https://www.mathnet.ru/eng/adm/v18/i1/p42
  • This publication is cited in the following 16 articles:
    1. Chattopadhyay S., Patra K.L., Sahoo B.K., “Minimal Cut-Sets in the Power Graphs of Certain Finite Non-Cyclic Groups”, Commun. Algebr., 49:3 (2021), 1195–1211  crossref  mathscinet  zmath  isi  scopus
    2. Kumar A., Selvaganesh L., Cameron P.J., Chelvam T.T., “Recent Developments on the Power Graph of Finite Groups - a Survey”, AKCE Int. J. Graphs Comb., 18:2 (2021), 65–94  crossref  mathscinet  isi  scopus
    3. Panda R.P., Patra K.L., Sahoo B.K., “On the Minimum Degree of the Power Graph of a Finite Cyclic Group”, J. Algebra. Appl., 20:3 (2021), 2150044  crossref  mathscinet  isi  scopus
    4. X. Y. Chen, A. R. Moghaddamfar, M. Zohourattar, “Some properties of various graphs associated with finite groups”, Algebra Discrete Math., 31:2 (2021), 195–211  mathnet  crossref
    5. Liu Y., Yuan J.-b., Dai W.-j., Li D., “Three-State Quantum Walk on the Cayley Graph of the Dihedral Group”, Quantum Inf. Process., 20:3 (2021), 106  crossref  mathscinet  isi  scopus
    6. Ali F., Fatima S., Wang W., “on the Power Graphs of Certain Finite Groups”, Linear Multilinear Algebra, 2020  crossref  isi  scopus
    7. S. Chattopadhyay, K. L. Patra, B. K. Sahoo, “Vertex connectivity of the power graph of a finite cyclic group II”, J. Algebra. Appl., 19:2 (2020), 2050040  crossref  mathscinet  isi  scopus
    8. K. Pourghobadi, S. H. Jafari, “The diameter of proper power graphs of alternating groups”, Util. Math., 113 (2019), 121–129  mathscinet  isi
    9. R. P. Panda, “Laplacian spectra of power graphs of certain finite groups”, Graphs Comb., 35:5 (2019), 1209–1223  crossref  mathscinet  zmath  isi  scopus
    10. S. Chattopadhyay, K. L. Patra, B. K. Sahoo, “Vertex connectivity of the power graph of a finite cyclic group”, Discret Appl. Math., 266:SI (2019), 259–271  crossref  mathscinet  isi  scopus
    11. R. P. Panda, K. V. Krishna, “On connectedness of power graphs of finite groups”, J. Algebra. Appl., 17:10 (2018), 1850184  crossref  mathscinet  zmath  isi  scopus
    12. S. Chattopadhyay, P. Panigrahi, F. Atik, “Spectral radius of power graphs on certain finite groups”, Indag. Math.-New Ser., 29:2 (2018), 730–737  crossref  mathscinet  zmath  isi  scopus
    13. R. P. Panda, K. V. Krishna, “On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups”, Commun. Algebr., 46:7 (2018), 3182–3197  crossref  mathscinet  zmath  isi  scopus
    14. A. Doostabadi, M. Farrokhi D.G., “Embeddings of (proper) power graphs of finite groups”, Algebra Discrete Math., 24:2 (2017), 221–234  mathnet
    15. S. Chattopadhyay, P. Panigrahi, “Some structural properties of power graphs and k-power graphs of finite semigroups”, J. Discret. Math. Sci. Cryptogr., 20:5 (2017), 1101–1119  crossref  mathscinet  isi  scopus
    16. Chattopadhyay S., Panigrahi P., “on Laplacian Spectrum of Power Graphs of Finite Cyclic and Dihedral Groups”, Linear Multilinear Algebra, 63:7 (2015), 1345–1355  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:436
    Full-text PDF :213
    References:89
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025