Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2010, Volume 10, Issue 2, Pages 29–50 (Mi adm47)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

2-Galois groups and the Kaplansky radical

R. P. Darioa, A. Englerb

a UTFPR-DAMAT, Av. Sete de Setembro, 3165, 80230-901 Curitiba, PR, Brasil
b UNICAMP-IMECC, Caixa Postal 6065, 13083-970 Campinas, SP, Brasil
Full-text PDF (316 kB) Citations (1)
Abstract: An accurate description of the Galois group $G_{F}(2)$ of the maximal Galois 2-extension of a field $F$ may be given for fields $F$ admitting a 2-henselian valuation ring. In this note we generalize this result by characterizing the fields for which $G_{F}(2)$ decomposes as a free pro-2 product $\mathcal{F}*\mathcal{H}$ where $\mathcal{F}$ is a free closed subgroup of $G_{F}(2)$ and $\mathcal{H}$ is the Galois group of a 2-henselian extension of $F$. The free product decomposition of $G_{F}(2)$ is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of $F$. Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application.
Keywords: Brauer group, free pro-2 product, Galois group, 2-henselian valuation ring, quadratic form.
Received: 31.10.2009
Revised: 01.03.2011
Bibliographic databases:
Document Type: Article
MSC: 12J10, 12F10
Language: English
Citation: R. P. Dario, A. Engler, “2-Galois groups and the Kaplansky radical”, Algebra Discrete Math., 10:2 (2010), 29–50
Citation in format AMSBIB
\Bibitem{DarEng10}
\by R.~P.~Dario, A.~Engler
\paper 2-Galois groups and the Kaplansky radical
\jour Algebra Discrete Math.
\yr 2010
\vol 10
\issue 2
\pages 29--50
\mathnet{http://mi.mathnet.ru/adm47}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884742}
\zmath{https://zbmath.org/?q=an:1224.12006}
Linking options:
  • https://www.mathnet.ru/eng/adm47
  • https://www.mathnet.ru/eng/adm/v10/i2/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024