Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2013, Volume 16, Issue 2, Pages 242–286 (Mi adm451)  

This article is cited in 10 scientific papers (total in 10 papers)

RESEARCH ARTICLE

Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C#

A. Polak, D. Simson

Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
References:
Abstract: We present combinatorial algorithms constructing loop-free $P$-critical edge-bipartite (signed) graphs $\Delta'$, with $n\geq 3$ vertices, from pairs $(\Delta , w)$, with $\Delta $ a positive edge-bipartite graph having $n-1$ vertices and $w$ a sincere root of $\Delta $, up to an action $*:\mathcal{U} \mathcal{B} igr_n \times {\rm O}(n,\mathbb{Z}) \to \mathcal{U}\mathcal{B} igr_n$ of the orthogonal group ${\rm O}(n,\mathbb{Z})$ on the set $\mathcal{U} \mathcal{B} igr_n$ of loop-free edge-bipartite graphs, with $n\geq 3$ vertices. Here $\mathbb{Z}$ is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in $\mathcal{U} \mathcal{B} igr_n$ and for computing the ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical graphs $\Delta$ in $\mathcal{U} \mathcal{B} igr_n$ as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute $P$-critical graphs in $\mathcal{U} \mathcal{B} igr_n$ and connected positive graphs in $\mathcal{U} \mathcal{B} igr_n$, together with their Coxeter polynomials, reduced Coxeter numbers, and the ${\rm O}(n, \mathbb{Z})$-orbits, for $n\leq 10$. The computational results are presented in tables of Section 5.
Keywords: edge-bipartite graph, unit quadratic form, $P$-critical edge-bipartite graph, Gram matrix, sincere root, orthogonal group, algorithm, Coxeter polynomial, Euclidean diagram.
Received: 26.07.2013
Revised: 26.07.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Polak, D. Simson, “Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C#”, Algebra Discrete Math., 16:2 (2013), 242–286
Citation in format AMSBIB
\Bibitem{PolSim13}
\by A.~Polak, D.~Simson
\paper Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C\#
\jour Algebra Discrete Math.
\yr 2013
\vol 16
\issue 2
\pages 242--286
\mathnet{http://mi.mathnet.ru/adm451}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3186088}
Linking options:
  • https://www.mathnet.ru/eng/adm451
  • https://www.mathnet.ru/eng/adm/v16/i2/p242
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :128
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024