Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2002, Issue 1, Pages 32–63 (Mi adm398)  

This article is cited in 7 scientific papers (total in 7 papers)

RESEARCH ARTICLE

Tiled orders over discrete valuation rings, nite Markov chains and partially ordered sets. I

Zh. T. Chernousovaa, M. A. Dokuchaevb, M. A. Khibinac, V. V. Kirichenkoa, S. G. Miroshnichenkoa, V. N. Zhuravleva

a Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko Univ., Vladimirskaya Str., 64, Kiev, Ukraine
b Departamento de Matematica Univ. de Sao Paulo, Caixa Postal 66281, Sao Paulo, SP, 05315–970 — Brazil
c Glushkov In-t of Cybernetics NAS Ukraine, Glushkov Av., 40, 03680 Kiev, Ukraine
Full-text PDF (256 kB) Citations (7)
Abstract: We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index $in\,A$ of a right noetherian semiperfect ring $A$ as the maximal real eigen-value of its adjacency matrix. A tiled order $\Lambda$ is integral if $in\,\Lambda$ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, $in\, \Lambda\,=\,1$ if and only if $\Lambda$ is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced $(0, 1)$-order is Gorenstein if and only if either $in\,\Lambda\,=\,w(\Lambda )\,=\,1$, or $in\,\Lambda\,=\,w(\Lambda )\,=\,2$, where $w(\Lambda )$ is a width of $\Lambda$.
Keywords: semiperfect ring, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order, finite Markov chain.
Received: 26.10.2002
Bibliographic databases:
Document Type: Article
MSC: 16P40, 16G10
Language: English
Citation: Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, V. N. Zhuravlev, “Tiled orders over discrete valuation rings, nite Markov chains and partially ordered sets. I”, Algebra Discrete Math., 2002, no. 1, 32–63
Citation in format AMSBIB
\Bibitem{CheDokKhi02}
\by Zh.~T.~Chernousova, M.~A.~Dokuchaev, M.~A.~Khibina, V.~V.~Kirichenko, S.~G.~Miroshnichenko, V.~N.~Zhuravlev
\paper Tiled orders over discrete valuation rings, nite Markov chains and partially ordered sets.~I
\jour Algebra Discrete Math.
\yr 2002
\issue 1
\pages 32--63
\mathnet{http://mi.mathnet.ru/adm398}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048647}
\zmath{https://zbmath.org/?q=an:1037.16011}
Linking options:
  • https://www.mathnet.ru/eng/adm398
  • https://www.mathnet.ru/eng/adm/y2002/i1/p32
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024