Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2003, Issue 4, Pages 92–117 (Mi adm395)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

Structural properties of extremal asymmetric colorings

Oleg Verbitsky

Department of Algebra, Faculty of Mechanics and Mathematics, Kyiv National University, Volodymyrska 60, 01033 Kyiv, Ukraine
Full-text PDF (330 kB) Citations (1)
Abstract: Let $\Omega$ be a space with probability measure $\mu$ for which the notion of symmetry is defined. Given $A\subseteq\Omega$, let $ms(A)$ denote the supremum of $\mu(B)$ over symmetric $B\subseteq A$. An $r$-coloring of $\Omega$ is a measurable map $\chi:\Omega\to{\{1,\dots,r\}}$ possibly undefined on a set of measure 0. Given an $r$-coloring $\chi$, let $ms(\Omega;\chi)=\max_{1\le i\le r}ms(\chi^{-1}(i))$. With each space $\Omega$ we associate a Ramsey type number $ms(\Omega,r)=\inf_\chi ms(\Omega;\chi)$. We call a coloring $\chi$ congruent if the monochromatic classes $\chi^{-1}(1),\dots,\chi^{-1}(r)$ are pairwise congruent, i.e., can be mapped onto each other by a symmetry of $\Omega$. We define $ms^{\star}(\Omega,r)$ to be the infimum of $ms(\Omega;\chi)$ over congruent $\chi$. We prove that $ms(S^1,r)=ms^{\star}(S^1,r)$ for the unitary circle $S^1$ endowed with standard symmetries of a plane, estimate $ms^{\star}([0,1),r)$ for the unitary interval of reals considered with central symmetry, and explore some other regularity properties of extremal colorings for various spaces.
Keywords: continuous Ramsey theory, asymmetric colorings, symmetry of a Euclidean space, polyominoes.
Bibliographic databases:
Document Type: Article
MSC: 05D10
Language: English
Citation: Oleg Verbitsky, “Structural properties of extremal asymmetric colorings”, Algebra Discrete Math., 2003, no. 4, 92–117
Citation in format AMSBIB
\Bibitem{Ver03}
\by Oleg~Verbitsky
\paper Structural properties of extremal asymmetric colorings
\jour Algebra Discrete Math.
\yr 2003
\issue 4
\pages 92--117
\mathnet{http://mi.mathnet.ru/adm395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2070405}
\zmath{https://zbmath.org/?q=an:1061.05096}
Linking options:
  • https://www.mathnet.ru/eng/adm395
  • https://www.mathnet.ru/eng/adm/y2003/i4/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024