Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2003, Issue 3, Pages 95–101 (Mi adm387)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

On the separability of the restriction functor

Th. Theohari-Apostolidi, H. Vavatsoulas

Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
Full-text PDF (182 kB) Citations (2)
Abstract: Let $G$ be a group, $\Lambda=\bigoplus_{\sigma \in G}\Lambda_{\sigma}$ a strongly graded ring by $G$$H$ a subgroup of $G$ and $\Lambda_{H}=\bigoplus_{\sigma\in H}\Lambda_{\sigma}$. We give a necessary and sufficient condition for the ring $\Lambda/\Lambda_{H}$ to be separable, generalizing the corresponding result for the ring extension $\Lambda/\Lambda_{1}$. As a consequence of this result we give a condition for $\Lambda$ to be a hereditary order in case $\Lambda$ is a strongly graded by finite group $R$-order in a separable $K$-algebra, for $R$ a Dedekind domain with quotient field $K$.
Keywords: separable algebras, strongly graded algebras, restriction functor, induction functor.
Received: 12.05.2003
Revised: 23.10.2003
Bibliographic databases:
Document Type: Article
MSC: 16W50, 16G30, 16H05
Language: English
Citation: Th. Theohari-Apostolidi, H. Vavatsoulas, “On the separability of the restriction functor”, Algebra Discrete Math., 2003, no. 3, 95–101
Citation in format AMSBIB
\Bibitem{TheVav03}
\by Th.~Theohari-Apostolidi, H.~Vavatsoulas
\paper On the separability of the restriction functor
\jour Algebra Discrete Math.
\yr 2003
\issue 3
\pages 95--101
\mathnet{http://mi.mathnet.ru/adm387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048643}
\zmath{https://zbmath.org/?q=an:1067.16063}
Linking options:
  • https://www.mathnet.ru/eng/adm387
  • https://www.mathnet.ru/eng/adm/y2003/i3/p95
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024