Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2003, Issue 3, Pages 46–53 (Mi adm383)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

On equivalence of some subcategories of modules in Morita contexts

A. I. Kashu

Str. Academiei,. 5, Inst. of Mathematics and Computer Science,. MD–2028 Chisinau, Rep. of Moldova
Full-text PDF (200 kB) Citations (2)
Abstract: A Morita context $(R,\,_RV_S,\,_SW_R,\,S)$ defines the isomorphism $\mathcal L_0(R)\cong\mathcal L_0(S)$ of lattices of torsions $r\geq r_I$ of $R$-$Mod$ and torsions $s\geq r_J$ of $S$-$Mod$, where $I$ and $J$ are the trace ideals of the given context. For every pair $(r,s)$ of corresponding torsions the modifications of functors $T^W=W\otimes_{R^-}$ and $T^V=V\otimes_{S^-}$ are considered:
\begin{equation*} R\textrm{-}Mod\supseteq\mathcal P(r) ???????????? \mathcal P(s)\subseteq S\textrm{-}Mod, \end{equation*}
where $\mathcal P(r)$ and $\mathcal P(s)$ are the classes of torsion free modules. It is proved that these functors define the equivalence
\begin{equation*} \mathcal P(r)\cap\mathcal J_I\approx\mathcal P(s)\cap\mathcal J_J, \end{equation*}
where $\mathcal P(r)=\{_RM\mid r(M)=0\}$ and $\mathcal J_I=\{_RM\mid IM=M\}$.
Keywords: torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence.
Received: 04.06.2003
Revised: 27.10.2003
Bibliographic databases:
Document Type: Article
MSC: 16S90, 16D90
Language: English
Citation: A. I. Kashu, “On equivalence of some subcategories of modules in Morita contexts”, Algebra Discrete Math., 2003, no. 3, 46–53
Citation in format AMSBIB
\Bibitem{Kas03}
\by A.~I.~Kashu
\paper On equivalence of some subcategories of modules in Morita contexts
\jour Algebra Discrete Math.
\yr 2003
\issue 3
\pages 46--53
\mathnet{http://mi.mathnet.ru/adm383}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048639}
\zmath{https://zbmath.org/?q=an:1067.16006}
Linking options:
  • https://www.mathnet.ru/eng/adm383
  • https://www.mathnet.ru/eng/adm/y2003/i3/p46
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :215
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024