|
Algebra and Discrete Mathematics, 2003, Issue 3, Pages 46–53
(Mi adm383)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
RESEARCH ARTICLE
On equivalence of some subcategories of modules in Morita contexts
A. I. Kashu Str. Academiei,. 5, Inst. of Mathematics
and Computer Science,. MD–2028 Chisinau,
Rep. of Moldova
Abstract:
A Morita context $(R,\,_RV_S,\,_SW_R,\,S)$ defines the isomorphism $\mathcal L_0(R)\cong\mathcal L_0(S)$ of lattices of torsions $r\geq r_I$ of $R$-$Mod$ and torsions $s\geq r_J$ of $S$-$Mod$, where $I$ and $J$ are the trace ideals of the given context. For every pair $(r,s)$ of corresponding torsions the modifications of functors $T^W=W\otimes_{R^-}$ and $T^V=V\otimes_{S^-}$ are considered:
\begin{equation*}
R\textrm{-}Mod\supseteq\mathcal P(r)
????????????
\mathcal P(s)\subseteq S\textrm{-}Mod,
\end{equation*}
where $\mathcal P(r)$ and $\mathcal P(s)$ are the classes of torsion free modules. It is proved that these functors define the equivalence
\begin{equation*}
\mathcal P(r)\cap\mathcal J_I\approx\mathcal P(s)\cap\mathcal J_J,
\end{equation*}
where $\mathcal P(r)=\{_RM\mid r(M)=0\}$ and $\mathcal J_I=\{_RM\mid IM=M\}$.
Keywords:
torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence.
Received: 04.06.2003 Revised: 27.10.2003
Citation:
A. I. Kashu, “On equivalence of some subcategories of modules in Morita contexts”, Algebra Discrete Math., 2003, no. 3, 46–53
Linking options:
https://www.mathnet.ru/eng/adm383 https://www.mathnet.ru/eng/adm/y2003/i3/p46
|
Statistics & downloads: |
Abstract page: | 165 | Full-text PDF : | 215 | First page: | 1 |
|