Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2003, Issue 2, Pages 47–86 (Mi adm378)  

This article is cited in 6 scientific papers (total in 6 papers)

RESEARCH ARTICLE

Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II

Zh. T. Chernousovaa, M. A. Dokuchaevb, M. A. Khibinac, V. V. Kirichenkoa, S. G. Miroshnichenkoa, V. N. Zhuravleva

a Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko Univ., Vladimirskaya Str., 64, Kiev, Ukraine
b Departamento de Matematica Univ. de Sao Paulo, Caixa Postal 66281, Sao Paulo, SP,  05315–970 — Brazil
c Glushkov In-t of Cybernetics NAS Ukraine, Glushkov Av., 40, 03680 Kiev, Ukraine
Full-text PDF (320 kB) Citations (6)
Abstract: The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number $s$ of vertices is at most 7. For $2\leq s\leq 5$ we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation $\sigma$ on $n$ letters without fixed elements there exists a reduced Gorenstein tiled order $\Lambda$ with $\sigma(\mathcal E)=\sigma$. We show that for any positive integer $k$ there exists a Gorenstein tiled order $\Lambda_{k}$ with $in\Lambda_{k}=k$. The adjacency matrix of any cyclic Gorenstein order $\Lambda$ is a linear combination of powers of a permutation matrix $P_{\sigma}$ with non-negative coefficients, where $\sigma= \sigma(\Lambda)$. If $A$ is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then $Q(A)$ be a strongly connected simply laced quiver which has no loops.
Keywords: semiperfect ring, exponent matrix, tiled order, quiver, partially ordered set, index of semiperfect ring, Gorenstein tiled order, global dimension, transition matrix.
Received: 28.03.2003
Revised: 03.07.2003
Bibliographic databases:
Document Type: Article
MSC: 16P40, 16G10
Language: English
Citation: Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, V. N. Zhuravlev, “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II”, Algebra Discrete Math., 2003, no. 2, 47–86
Citation in format AMSBIB
\Bibitem{CheDokKhi03}
\by Zh.~T.~Chernousova, M.~A.~Dokuchaev, M.~A.~Khibina, V.~V.~Kirichenko, S.~G.~Miroshnichenko, V.~N.~Zhuravlev
\paper Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets.~II
\jour Algebra Discrete Math.
\yr 2003
\issue 2
\pages 47--86
\mathnet{http://mi.mathnet.ru/adm378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048656}
\zmath{https://zbmath.org/?q=an:1037.16012}
Linking options:
  • https://www.mathnet.ru/eng/adm378
  • https://www.mathnet.ru/eng/adm/y2003/i2/p47
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024