Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2004, Issue 4, Pages 106–118 (Mi adm363)  

This article is cited in 4 scientific papers (total in 4 papers)

RESEARCH ARTICLE

Correct classes of modules

Robert Wisbauer

Department of Mathematics Heinrich Heine University  40225 Düsseldorf, Germany
Full-text PDF (229 kB) Citations (4)
Abstract: For a ring $R$, call a class $\mathcal{C}$ of $R$-modules (pure-) mono-correct if for any $M,N\in\mathcal {C}$ the existence of (pure) monomorphisms $M\to N$ and $N\to M$ implies $M\simeq N$. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an $R$-module $M$, the class $\sigma M$ of all $M$-subgenerated modules is mono-correct if and only if $M$ is semisimple, and the class of all weakly $M$-injective modules is mono-correct if and only if $M$ is locally noetherian. Applying this to the functor ring of $R$-Mod provides a new proof that $R$ is left pure semisimple if and only if $R$-Mod is pure-mono-correct. Furthermore, the class of pure-injective $R$-modules is always pure-mono-correct, and it is mono-correct if and only if $R$ is von Neumann regular. The dual notion epi-correctness is also considered and it is shown that a ring $R$ is left perfect if and only if the class of all flat $R$-modules is epi-correct. At the end some open problems are stated.
Keywords: Cantor-Bernstein Theorem, correct classes, homological classification of rings.
Received: 12.06.2004
Revised: 15.12.2004
Bibliographic databases:
Document Type: Article
MSC: 16D70, 16P40, 16D60
Language: English
Citation: Robert Wisbauer, “Correct classes of modules”, Algebra Discrete Math., 2004, no. 4, 106–118
Citation in format AMSBIB
\Bibitem{Wis04}
\by Robert~Wisbauer
\paper Correct classes of modules
\jour Algebra Discrete Math.
\yr 2004
\issue 4
\pages 106--118
\mathnet{http://mi.mathnet.ru/adm363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2148720}
\zmath{https://zbmath.org/?q=an:1093.16009}
Linking options:
  • https://www.mathnet.ru/eng/adm363
  • https://www.mathnet.ru/eng/adm/y2004/i4/p106
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024