Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2010, Volume 9, Issue 2, Pages 127–139 (Mi adm34)  

RESEARCH ARTICLE

Biserial minor degenerations of matrix algebras over a field

Anna Włodarska

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 87-100 Toruń, Poland
Abstract: Let $n\geq 2$ be a positive integer, $K$ an arbitrary field, and $q=[q^{(1)}|\dots|q^{(n)}]$ an $n$-block matrix of $n\times n$ square matrices $q^{(1)},\dots,q^{(n)}$ with coefficients in $K$ satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations $\mathbb M^q_n(K)$ of the full matrix algebra $\mathbb M_n(K)$ in the sense of Fujita–Saka—Simson [7]. A characterisation of all block matrices $q=[q^{(1)}|\dots|q^{(n)}]$ such that the algebra $\mathbb M^q_n(K)$ is basic and right biserial is given in the paper. We also prove that a basic algebra $\mathbb M^q_n(K)$ is right biserial if and only if $\mathbb M^q_n(K)$ is right special biserial. It is also shown that the $K$-dimensions of the left socle of $\mathbb M^q_n(K)$ and of the right socle of $\mathbb M^q_n(K)$ coincide, in case $\mathbb M^q_n(K)$ is basic and biserial.
Keywords: right special biserial algebra, biserial algebra, Gabriel quiver.
Received: 09.03.2010
Revised: 14.10.2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anna Włodarska, “Biserial minor degenerations of matrix algebras over a field”, Algebra Discrete Math., 9:2 (2010), 127–139
Citation in format AMSBIB
\Bibitem{Wlo10}
\by Anna W{\l}odarska
\paper Biserial minor degenerations of matrix algebras over a~field
\jour Algebra Discrete Math.
\yr 2010
\vol 9
\issue 2
\pages 127--139
\mathnet{http://mi.mathnet.ru/adm34}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808786}
\zmath{https://zbmath.org/?q=an:1209.16021}
Linking options:
  • https://www.mathnet.ru/eng/adm34
  • https://www.mathnet.ru/eng/adm/v9/i2/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025