Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2010, Volume 9, Issue 2, Pages 127–139 (Mi adm34)  

RESEARCH ARTICLE

Biserial minor degenerations of matrix algebras over a field

Anna Włodarska

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 87-100 Toruń, Poland
Abstract: Let n2 be a positive integer, K an arbitrary field, and q=[q(1)||q(n)] an n-block matrix of n×n square matrices q(1),,q(n) with coefficients in K satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations Mqn(K) of the full matrix algebra Mn(K) in the sense of Fujita–Saka—Simson [7]. A characterisation of all block matrices q=[q(1)||q(n)] such that the algebra Mqn(K) is basic and right biserial is given in the paper. We also prove that a basic algebra Mqn(K) is right biserial if and only if Mqn(K) is right special biserial. It is also shown that the K-dimensions of the left socle of Mqn(K) and of the right socle of Mqn(K) coincide, in case Mqn(K) is basic and biserial.
Keywords: right special biserial algebra, biserial algebra, Gabriel quiver.
Received: 09.03.2010
Revised: 14.10.2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anna Włodarska, “Biserial minor degenerations of matrix algebras over a field”, Algebra Discrete Math., 9:2 (2010), 127–139
Citation in format AMSBIB
\Bibitem{Wlo10}
\by Anna W{\l}odarska
\paper Biserial minor degenerations of matrix algebras over a~field
\jour Algebra Discrete Math.
\yr 2010
\vol 9
\issue 2
\pages 127--139
\mathnet{http://mi.mathnet.ru/adm34}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808786}
\zmath{https://zbmath.org/?q=an:1209.16021}
Linking options:
  • https://www.mathnet.ru/eng/adm34
  • https://www.mathnet.ru/eng/adm/v9/i2/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :88
    References:5
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025