Loading [MathJax]/jax/output/SVG/config.js
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2004, Issue 1, Pages 57–74 (Mi adm328)  

This article is cited in 9 scientific papers (total in 9 papers)

RESEARCH ARTICLE

Derived tame and derived wild algebras

Yuriy A. Drozd

Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 01033 Kyiv, Ukraine
Full-text PDF (298 kB) Citations (9)
Abstract: We prove that every finite dimensional algebra over an algebraically closed field is either derived tame or derived wild. We also prove that any deformation of a derived wild algebra is derived wild.
Keywords: derived categories, derived tame and derived wild algebras, deformations of algebras, matrix problems, representations of boxes.
Received: 16.10.2003
Revised: 31.01.2004
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yuriy A. Drozd, “Derived tame and derived wild algebras”, Algebra Discrete Math., 2004, no. 1, 57–74
Citation in format AMSBIB
\Bibitem{Dro04}
\by Yuriy~A.~Drozd
\paper Derived tame and derived wild algebras
\jour Algebra Discrete Math.
\yr 2004
\issue 1
\pages 57--74
\mathnet{http://mi.mathnet.ru/adm328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2051381}
\zmath{https://zbmath.org/?q=an:1067.16028}
Linking options:
  • https://www.mathnet.ru/eng/adm328
  • https://www.mathnet.ru/eng/adm/y2004/i1/p57
  • This publication is cited in the following 9 articles:
    1. Bekkert V., Giraldo H., Velez-Marulanda J.A., “Derived Tame Nakayama Algebras”, Proc. Amer. Math. Soc., 149:11 (2021), 4555–4567  crossref  mathscinet  isi  scopus
    2. Chen J., Gao Zh., Wicks E., Zhang J.J., Zhang X., Zhu H., “Frobenius-Perron Theory of Endofunctors”, Algebr. Number Theory, 13:9 (2019), 2005–2055  crossref  mathscinet  zmath  isi  scopus
    3. Futorny V., Marko F., “Derived Representation Type of Schur Superalgebras”, Commun. Algebr., 42:8 (2014), 3381–3385  crossref  mathscinet  zmath  isi  elib  scopus
    4. Li Fang, Sun LongGang, “Derived Representation Type and Gorenstein Projective Modules of an Algebra Under Crossed Product”, Sci. China-Math., 56:3 (2013), 531–540  crossref  mathscinet  zmath  isi  scopus
    5. Voloshyn D.E., Drozd Yu.A., “Derived Categories of Nodal Curves”, Ukr. Math. J., 64:8 (2013), 1177–1184  crossref  mathscinet  zmath  isi  elib  scopus
    6. Bekkert V., Drozd Yu., Futorny V., “Derived Tame Local and Two-Point Algebras”, J. Algebra, 322:7 (2009), 2433–2448  crossref  mathscinet  zmath  isi  elib  scopus
    7. Bekkert V., Drozd Yu., “Derived Categories for Algebras with Radical Square Zero”, Algebras, Representations and Applications, Contemporary Mathematics, 483, eds. Futorny V., Kac V., Kashuba I., Zelmanov E., 2009, 55–62  crossref  mathscinet  zmath  isi
    8. B. Z. Shavarovskii, “Similarity transformations of decomposable matrix polynomials and related questions”, Comput. Math. Math. Phys., 49:9 (2009), 1469–1482  mathnet  crossref  zmath  isi  elib
    9. Bautista R., “On Derived Tame Algebras”, Bol. Soc. Mat. Mex., 13:1 (2007), 25–54  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :152
    References:5
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025