Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2004, Issue 1, Pages 17–36 (Mi adm326)  

RESEARCH ARTICLE

Minimax sums of posets and the quadratic Tits form

Vitalij M. Bondarenko, Andrej M. Polishchuk

Institute of Mathematics, Tereshchenkivska 3, 01601 Kyiv, Ukraine
Abstract: Let $S$ be an infinite poset (partially ordered set) and $\mathbb{Z}_0^{S\cup{0}}$ the subset of the cartesian product $\mathbb{Z}^{S\cup{0}}$ consisting of all vectors $z=(z_i)$ with finite number of nonzero coordinates. We call the quadratic Tits form of $S$ (by analogy with the case of a finite poset) the form $q_S:\mathbb{Z}_0^{S\cup{0}}\to\mathbb{Z}$ defined by the equality $q_S(z)=z_0^2+\sum_{i\in S} z_i^2 +\sum_{i<j, i,j\in S}z_iz_j-z_0\sum_{i\in S}z_i$. In this paper we study the structure of infinite posets with positive Tits form. In particular, there arise posets of specific form which we call minimax sums of posets.
Keywords: poset, minimax sum, the rank of a sum, the Tits form.
Received: 18.11.2003
Revised: 09.02.2004
Bibliographic databases:
Document Type: Article
MSC: 15A, 16G
Language: English
Citation: Vitalij M. Bondarenko, Andrej M. Polishchuk, “Minimax sums of posets and the quadratic Tits form”, Algebra Discrete Math., 2004, no. 1, 17–36
Citation in format AMSBIB
\Bibitem{BonPol04}
\by Vitalij~M.~Bondarenko, Andrej~M.~Polishchuk
\paper Minimax sums of posets and the quadratic Tits form
\jour Algebra Discrete Math.
\yr 2004
\issue 1
\pages 17--36
\mathnet{http://mi.mathnet.ru/adm326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2051379}
\zmath{https://zbmath.org/?q=an:1067.16018}
Linking options:
  • https://www.mathnet.ru/eng/adm326
  • https://www.mathnet.ru/eng/adm/y2004/i1/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :269
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024