|
Algebra and Discrete Mathematics, 2004, Issue 1, Pages 17–36
(Mi adm326)
|
|
|
|
RESEARCH ARTICLE
Minimax sums of posets and the quadratic Tits form
Vitalij M. Bondarenko, Andrej M. Polishchuk Institute of Mathematics,
Tereshchenkivska 3, 01601 Kyiv, Ukraine
Abstract:
Let $S$ be an infinite poset (partially ordered set) and $\mathbb{Z}_0^{S\cup{0}}$ the subset of the cartesian product $\mathbb{Z}^{S\cup{0}}$ consisting of all vectors $z=(z_i)$ with finite number of nonzero coordinates. We call the quadratic Tits form of $S$ (by analogy with the case of a finite poset) the form $q_S:\mathbb{Z}_0^{S\cup{0}}\to\mathbb{Z}$ defined by the equality $q_S(z)=z_0^2+\sum_{i\in S} z_i^2 +\sum_{i<j, i,j\in S}z_iz_j-z_0\sum_{i\in S}z_i$. In this paper we study the structure of infinite posets with positive Tits form. In particular, there arise posets of specific form which we call minimax sums of posets.
Keywords:
poset, minimax sum, the rank of a sum, the Tits form.
Received: 18.11.2003 Revised: 09.02.2004
Citation:
Vitalij M. Bondarenko, Andrej M. Polishchuk, “Minimax sums of posets and the quadratic Tits form”, Algebra Discrete Math., 2004, no. 1, 17–36
Linking options:
https://www.mathnet.ru/eng/adm326 https://www.mathnet.ru/eng/adm/y2004/i1/p17
|
Statistics & downloads: |
Abstract page: | 123 | Full-text PDF : | 269 | First page: | 1 |
|