Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2005, Issue 4, Pages 93–100 (Mi adm322)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

Rings which have $(m,n)$-flat injective modules

Zh. Zhanmin, X. Zhangsheng

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P. R. China
Full-text PDF (193 kB) Citations (1)
Abstract: A ring $R$ is said to be a left $IF-(m,n)$ ring if every injective left $R$-module is $(m,n)$-flat. In this paper, several characterizations of left $IF-(m,n)$ rings are investigated, some conditions under which $R$ is left $IF-(m,n)$ are given. Furthermore, conditions under which a left $IF-1$ ring (i.e., $IF-(1,1)$ ring) is a field, a regular ring and a semisimple ring are studied respectively.
Keywords: injective modules; $(m,n)$-flat modules; left $IF-(m,n)$ rings; left $IF-1$ rings.
Received: 01.07.2004
Revised: 06.05.2005
Bibliographic databases:
Document Type: Article
MSC: 16D50, 16E65
Language: English
Citation: Zh. Zhanmin, X. Zhangsheng, “Rings which have $(m,n)$-flat injective modules”, Algebra Discrete Math., 2005, no. 4, 93–100
Citation in format AMSBIB
\Bibitem{ZhaZha05}
\by Zh.~Zhanmin, X.~Zhangsheng
\paper Rings which have $(m,n)$-flat injective modules
\jour Algebra Discrete Math.
\yr 2005
\issue 4
\pages 93--100
\mathnet{http://mi.mathnet.ru/adm322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2237704}
\zmath{https://zbmath.org/?q=an:1093.16002}
Linking options:
  • https://www.mathnet.ru/eng/adm322
  • https://www.mathnet.ru/eng/adm/y2005/i4/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024