Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2005, Issue 4, Pages 28–35 (Mi adm318)  

RESEARCH ARTICLE

Presentations and word problem for strong semilattices of semigroups

Gonca Ayik, Hayrullah Ayik, Yu. Ünlü

Çukurova University, Department of Mathematics 01330–Adana, Turkey
Abstract: Let $I$ be a semilattice, and $S_i(i\in I)$ be a family of disjoint semigroups. Then we prove that the strong semilattice $S=\mathcal{S} [I,S_i,\phi_{j,i}]$ of semigroups $S_i$ with homomorphisms $\phi _{j,i}:S_j\rightarrow S_i$ $(j\geq i)$ is finitely presented if and only if $I$ is finite and each $S_i$ $(i\in I)$ is finitely presented. Moreover, for a finite semilattice $I$$S$ has a soluble word problem if and only if each $S_i$ $(i\in I)$ has a soluble word problem. Finally, we give an example of non-automatic semigroup which has a soluble word problem.
Keywords: Semigroup presentations, strong semilattices of semigroups, word problems.
Received: 12.09.2005
Revised: 15.12.2005
Bibliographic databases:
Document Type: Article
MSC: 20M05
Language: English
Citation: Gonca Ayik, Hayrullah Ayik, Yu. Ünlü, “Presentations and word problem for strong semilattices of semigroups”, Algebra Discrete Math., 2005, no. 4, 28–35
Citation in format AMSBIB
\Bibitem{AyiAyiUnl05}
\by Gonca~Ayik, Hayrullah~Ayik, Yu.~\"Unl\"u
\paper Presentations and word problem for strong semilattices of semigroups
\jour Algebra Discrete Math.
\yr 2005
\issue 4
\pages 28--35
\mathnet{http://mi.mathnet.ru/adm318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2237700}
\zmath{https://zbmath.org/?q=an:1092.20043}
Linking options:
  • https://www.mathnet.ru/eng/adm318
  • https://www.mathnet.ru/eng/adm/y2005/i4/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024