Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2005, Issue 2, Pages 58–79 (Mi adm303)  

RESEARCH ARTICLE

Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups

M. Parvathi, A. Joseph Kennedy

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai – 600 005, India
Abstract: The Partition algebras $P_k(x)$ have been defined in [M1] and [Jo]. We introduce a new class of algebras for every group $G$ called "Extended $G$-Vertex Colored Partition Algebras," denoted by $\widehat{P}_{k}(x,G)$, which contain partition algebras $P_k(x)$, as subalgebras. We generalized Jones result by showing that for a finite group $G$, the algebra $\widehat{P}_{k}(n,G)$ is the centralizer algebra of an action of the symmetric group $S_n$ on tensor space $W^{\otimes k}$, where $W=\mathbb{C}^{n|G|}$. Further we show that these algebras $\widehat{P}_{k}(x,G)$ contain as subalgebras the "$G$-Vertex Colored Partition Algebras ${P_{k}(x,G)}$," introduced in [PK1].
Keywords: Partition algebra, centralizer algebra, direct product, wreath product, symmetric group.
Received: 27.10.2003
Revised: 16.07.2004
Bibliographic databases:
Document Type: Article
MSC: 16S99
Language: English
Citation: M. Parvathi, A. Joseph Kennedy, “Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups”, Algebra Discrete Math., 2005, no. 2, 58–79
Citation in format AMSBIB
\Bibitem{ParKen05}
\by M.~Parvathi, A.~Joseph~Kennedy
\paper Extended $G$-vertex colored partition algebras as centralizer algebras of symmetric groups
\jour Algebra Discrete Math.
\yr 2005
\issue 2
\pages 58--79
\mathnet{http://mi.mathnet.ru/adm303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2238218}
\zmath{https://zbmath.org/?q=an:1091.20005}
Linking options:
  • https://www.mathnet.ru/eng/adm303
  • https://www.mathnet.ru/eng/adm/y2005/i2/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024